These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 37583930)
1. Ultrasound-based radiomics model for predicting molecular biomarkers in breast cancer. Xu R; You T; Liu C; Lin Q; Guo Q; Zhong G; Liu L; Ouyang Q Front Oncol; 2023; 13():1216446. PubMed ID: 37583930 [TBL] [Abstract][Full Text] [Related]
2. Ultrasound deep learning radiomics and clinical machine learning models to predict low nuclear grade, ER, PR, and HER2 receptor status in pure ductal carcinoma Zhu M; Kuang Y; Jiang Z; Liu J; Zhang H; Zhao H; Luo H; Chen Y; Peng Y Gland Surg; 2024 Apr; 13(4):512-527. PubMed ID: 38720675 [TBL] [Abstract][Full Text] [Related]
3. Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features. Wang J; Gao W; Lu M; Yao X; Yang D Front Oncol; 2023; 13():1290313. PubMed ID: 38044998 [TBL] [Abstract][Full Text] [Related]
4. Preoperative Computed Tomography Radiomics Analysis for Predicting Receptors Status and Ki-67 Levels in Breast Cancer. Fan Y; Pan X; Yang F; Liu S; Wang Z; Sun J; Chen J Am J Clin Oncol; 2022 Dec; 45(12):526-533. PubMed ID: 36413682 [TBL] [Abstract][Full Text] [Related]
5. Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer. Huang Y; Wei L; Hu Y; Shao N; Lin Y; He S; Shi H; Zhang X; Lin Y Front Oncol; 2021; 11():706733. PubMed ID: 34490107 [TBL] [Abstract][Full Text] [Related]
6. Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach. Chen X; Li M; Su D Medicine (Baltimore); 2024 Aug; 103(33):e39343. PubMed ID: 39151526 [TBL] [Abstract][Full Text] [Related]
7. Preoperative ultrasound radiomics analysis for expression of multiple molecular biomarkers in mass type of breast ductal carcinoma in situ. Wu L; Zhao Y; Lin P; Qin H; Liu Y; Wan D; Li X; He Y; Yang H BMC Med Imaging; 2021 May; 21(1):84. PubMed ID: 34001017 [TBL] [Abstract][Full Text] [Related]
8. Performance evaluation of ML models for preoperative prediction of HER2-low BC based on CE-CBBCT radiomic features: A prospective study. Chen X; Li M; Liang X; Su D Medicine (Baltimore); 2024 Jun; 103(24):e38513. PubMed ID: 38875420 [TBL] [Abstract][Full Text] [Related]
9. Predicting Ki-67 expression levels in breast cancer using radiomics-based approaches on digital breast tomosynthesis and ultrasound. Liu J; Yan C; Liu C; Wang Y; Chen Q; Chen Y; Guo J; Chen S Front Oncol; 2024; 14():1403522. PubMed ID: 39055558 [TBL] [Abstract][Full Text] [Related]
10. A Comprehensive Model Outperformed the Single Radiomics Model in Noninvasively Predicting the HER2 Status in Patients with Breast Cancer. Liu W; Yang Y; Wang X; Li C; Liu C; Li X; Wen J; Lin X; Qin J Acad Radiol; 2024 Aug; ():. PubMed ID: 39122586 [TBL] [Abstract][Full Text] [Related]
11. Enhancing Ki-67 Prediction in Breast Cancer: Integrating Intratumoral and Peritumoral Radiomics From Automated Breast Ultrasound via Machine Learning. Li F; Zhu TW; Lin M; Zhang XT; Zhang YL; Zhou AL; Huang DY Acad Radiol; 2024 Jul; 31(7):2663-2673. PubMed ID: 38182442 [TBL] [Abstract][Full Text] [Related]
12. Development and Validation of an Ultrasound-Based Radiomics Nomogram for Identifying HER2 Status in Patients with Breast Carcinoma. Guo Y; Wu J; Wang Y; Jin Y Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553137 [TBL] [Abstract][Full Text] [Related]
13. Intra- and Peritumoral Radiomics Model Based on Early DCE-MRI for Preoperative Prediction of Molecular Subtypes in Invasive Ductal Breast Carcinoma: A Multitask Machine Learning Study. Zhang S; Wang X; Yang Z; Zhu Y; Zhao N; Li Y; He J; Sun H; Xie Z Front Oncol; 2022; 12():905551. PubMed ID: 35814460 [TBL] [Abstract][Full Text] [Related]
14. Contrast-Enhanced Mammography Radiomics Analysis for Preoperative Prediction of Breast Cancer Molecular Subtypes. Zhu S; Wang S; Guo S; Wu R; Zhang J; Kong M; Pan L; Gu Y; Yu S Acad Radiol; 2024 Jun; 31(6):2228-2238. PubMed ID: 38142176 [TBL] [Abstract][Full Text] [Related]
15. The Emergence of the Potential Therapeutic Targets: Ultrasound-Based Radiomics in the Prediction of Human Epidermal Growth Factor Receptor 2-Low Breast Cancer. Du Y; Li F; Zhang M; Pan J; Wu T; Zheng Y; Chen J; Yao M; Kuang Y; Wu R; Diao X Acad Radiol; 2024 Jul; 31(7):2674-2683. PubMed ID: 38309977 [TBL] [Abstract][Full Text] [Related]
16. A Two-Step Feature Selection Radiomic Approach to Predict Molecular Outcomes in Breast Cancer. Brancato V; Brancati N; Esposito G; La Rosa M; Cavaliere C; Allarà C; Romeo V; De Pietro G; Salvatore M; Aiello M; Sangiovanni M Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772592 [TBL] [Abstract][Full Text] [Related]
17. Integration of ultrasound radiomics features and clinical factors: A nomogram model for identifying the Ki-67 status in patients with breast carcinoma. Wu J; Fang Q; Yao J; Ge L; Hu L; Wang Z; Jin G Front Oncol; 2022; 12():979358. PubMed ID: 36276108 [TBL] [Abstract][Full Text] [Related]
18. Development of an ultrasound-based radiomics nomogram to preoperatively predict Ki-67 expression level in patients with breast cancer. Liu J; Wang X; Hu M; Zheng Y; Zhu L; Wang W; Hu J; Zhou Z; Dai Y; Dong F Front Oncol; 2022; 12():963925. PubMed ID: 36046035 [TBL] [Abstract][Full Text] [Related]
19. Radiomics Analysis of Contrast-Enhanced Breast MRI for Optimized Modelling of Virtual Prognostic Biomarkers in Breast Cancer. Polat DS; Xi Y; Hulsey K; Lewis M; Dogan BE Eur J Breast Health; 2024 Apr; 20(2):122-128. PubMed ID: 38571687 [TBL] [Abstract][Full Text] [Related]
20. Could Ultrasound-Based Radiomics Noninvasively Predict Axillary Lymph Node Metastasis in Breast Cancer? Qiu X; Jiang Y; Zhao Q; Yan C; Huang M; Jiang T J Ultrasound Med; 2020 Oct; 39(10):1897-1905. PubMed ID: 32329142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]