These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37584184)
1. Trace Doping: Fluorine-Containing Hydrophobic Lewis Acid Enables Stable Perovskite Solar Cells. Luo J; Lin F; Xia J; Yang H; Malik HA; Zhang Y; Abu Li Zi AYGL; Yao X; Wan Z; Jia C ChemSusChem; 2023 Dec; 16(23):e202300833. PubMed ID: 37584184 [TBL] [Abstract][Full Text] [Related]
2. Efficient and stabilized molecular doping of hole-transporting materials driven by a cyclic-anion strategy for perovskite solar cells. Zeng H; Lin F; Wan Z; Yang H; Lu H; Jiang S; Zhu J; Yin H; Wei R; Wang Y; Luo J; Jia C Chem Sci; 2024 Jun; 15(25):9814-9822. PubMed ID: 38939142 [TBL] [Abstract][Full Text] [Related]
3. A Novel Organic Dopant for Spiro-OMeTAD in High-Efficiency and Stable Perovskite Solar Cells. Guo Y Front Chem; 2022; 10():928712. PubMed ID: 35958234 [TBL] [Abstract][Full Text] [Related]
4. A Low-Cost and Lithium-Free Hole Transport Layer for Efficient and Stable Normal Perovskite Solar Cells. Tzoganakis N; Tsikritzis D; Chatzimanolis K; Zhuang X; Kymakis E Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903761 [TBL] [Abstract][Full Text] [Related]
5. A Ladder-like Dopant-free Hole-Transporting Polymer for Hysteresis-less High-Efficiency Perovskite Solar Cells with High Ambient Stability. Chawanpunyawat T; Funchien P; Wongkaew P; Henjongchom N; Ariyarit A; Ittisanronnachai S; Namuangruk S; Cheacharoen R; Sudyoadsuk T; Goubard F; Promarak V ChemSusChem; 2020 Sep; 13(18):5058-5066. PubMed ID: 32677195 [TBL] [Abstract][Full Text] [Related]
6. Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24. Zhu H; Ren Y; Pan L; Ouellette O; Eickemeyer FT; Wu Y; Li X; Wang S; Liu H; Dong X; Zakeeruddin SM; Liu Y; Hagfeldt A; Grätzel M J Am Chem Soc; 2021 Mar; 143(8):3231-3237. PubMed ID: 33600169 [TBL] [Abstract][Full Text] [Related]
7. Solution-Processed Cu(In, Ga)(S, Se) Xu L; Deng LL; Cao J; Wang X; Chen WY; Jiang Z Nanoscale Res Lett; 2017 Dec; 12(1):159. PubMed ID: 28249374 [TBL] [Abstract][Full Text] [Related]
8. Performance Enhancement of Planar Heterojunction Perovskite Solar Cells through Tuning the Doping Properties of Hole-Transporting Materials. Xi H; Tang S; Ma X; Chang J; Chen D; Lin Z; Zhong P; Wang H; Zhang C ACS Omega; 2017 Jan; 2(1):326-336. PubMed ID: 31457233 [TBL] [Abstract][Full Text] [Related]
9. Multiple Roles of Cobalt Pyrazol-Pyridine Complexes in High-Performing Perovskite Solar Cells. Lu J; Scully AD; Sun J; Tan B; Chesman ASR; Ruiz Raga S; Jiang L; Lin X; Pai N; Huang W; Cheng YB; Bach U; Simonov AN J Phys Chem Lett; 2019 Aug; 10(16):4675-4682. PubMed ID: 31328525 [TBL] [Abstract][Full Text] [Related]
10. A Universal Dopant-Free Polymeric Hole-Transporting Material for Efficient and Stable All-Inorganic and Organic-Inorganic Perovskite Solar Cells. Liu X; Fu S; Zhang W; Xu Z; Li X; Fang J; Zhu Y ACS Appl Mater Interfaces; 2021 Nov; 13(44):52549-52559. PubMed ID: 34705431 [TBL] [Abstract][Full Text] [Related]
11. Metal complex as p-type dopant-based organic spiro-OMeTAD hole-transporting material for free-Li-TFSI perovskite solar cells. Elawad M; Elbashir AA; Sajid M; John KI; Nimir H; Yang L; Ziyada AK; Osman A; Rajab F J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38284656 [TBL] [Abstract][Full Text] [Related]
12. Lewis-Acid Doping of Triphenylamine-Based Hole Transport Materials Improves the Performance and Stability of Perovskite Solar Cells. Liu J; Liu W; Aydin E; Harrison GT; Isikgor FH; Yang X; Subbiah AS; De Wolf S ACS Appl Mater Interfaces; 2020 May; 12(21):23874-23884. PubMed ID: 32412735 [TBL] [Abstract][Full Text] [Related]
13. Keggin-Type PMo Dong G; Xia D; Yang Y; Shenga L; Ye T; Fan R ACS Appl Mater Interfaces; 2017 Jan; 9(3):2378-2386. PubMed ID: 28058832 [TBL] [Abstract][Full Text] [Related]
14. New Insight into the Lewis Basic Sites in Metal-Organic Framework-Doped Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Wang J; Zhang J; Yang Y; Gai S; Dong Y; Qiu L; Xia D; Fan X; Wang W; Hu B; Cao W; Fan R ACS Appl Mater Interfaces; 2021 Feb; 13(4):5235-5244. PubMed ID: 33470803 [TBL] [Abstract][Full Text] [Related]
15. Efficiency improvement of inverted perovskite solar cells enabled by PTAA/MoS Hu W; Jin X; Li A; Liu CL; Wang XF Nanotechnology; 2022 May; 33(33):. PubMed ID: 35523088 [TBL] [Abstract][Full Text] [Related]
16. Engineering the Hole Transport Layer with a Conductive Donor-Acceptor Covalent Organic Framework for Stable and Efficient Perovskite Solar Cells. Wang S; Wu T; Guo J; Zhao R; Hua Y; Zhao Y ACS Cent Sci; 2024 Jul; 10(7):1383-1395. PubMed ID: 39071056 [TBL] [Abstract][Full Text] [Related]
17. Hysteresis Analysis of Hole-Transport-Material-Free Monolithic Perovskite Solar Cells with Carbon Counter Electrode by Current Density-Voltage and Impedance Spectra Measurements. Shah SAA; Sayyad MH; Sun J; Guo Z Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375498 [TBL] [Abstract][Full Text] [Related]
18. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Jung EH; Jeon NJ; Park EY; Moon CS; Shin TJ; Yang TY; Noh JH; Seo J Nature; 2019 Mar; 567(7749):511-515. PubMed ID: 30918371 [TBL] [Abstract][Full Text] [Related]
19. Investigation of Hole-Transporting Poly(triarylamine) on Aggregation and Charge Transport for Hysteresisless Scalable Planar Perovskite Solar Cells. Ko Y; Kim Y; Lee C; Kim Y; Jun Y ACS Appl Mater Interfaces; 2018 Apr; 10(14):11633-11641. PubMed ID: 29557640 [TBL] [Abstract][Full Text] [Related]
20. Dopant-Free Hole-Transporting Material Based on Poly(2,7-(9,9-bis(N,N-di-p-methoxylphenylamine)-4-phenyl))-fluorene for High-Performance Air-Processed Inverted Perovskite Solar Cells. Zhao B; Tian M; Chu X; Xu P; Yao J; Hou P; Li Z; Huang H Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]