These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37584206)
1. Interface Engineering for Aqueous Aluminum Metal Batteries: Current Progresses and Future Prospects. Yu H; Lv C; Yan C; Yu G Small Methods; 2024 Jun; 8(6):e2300758. PubMed ID: 37584206 [TBL] [Abstract][Full Text] [Related]
2. Highly Stable Al Metal Anode Enabled by Surface Chemical Passivation for Long-Life Aqueous Al Metal Batteries. Hao Q; Chen F; Chen X; Meng Q; Qi Y; Li N ACS Appl Mater Interfaces; 2023 Jul; 15(28):34303-34310. PubMed ID: 37419496 [TBL] [Abstract][Full Text] [Related]
3. Surface Engineering on Zinc Anode for Aqueous Zinc Metal Batteries. Peng H; Ge W; Ma X; Jiang X; Zhang K; Yang J ChemSusChem; 2024 Jul; 17(14):e202400076. PubMed ID: 38429246 [TBL] [Abstract][Full Text] [Related]
4. Reversible Al Metal Anodes Enabled by Amorphization for Aqueous Aluminum Batteries. Yan C; Lv C; Jia BE; Zhong L; Cao X; Guo X; Liu H; Xu W; Liu D; Yang L; Liu J; Hng HH; Chen W; Song L; Li S; Liu Z; Yan Q; Yu G J Am Chem Soc; 2022 Jun; 144(25):11444-11455. PubMed ID: 35723429 [TBL] [Abstract][Full Text] [Related]
5. Recent progress in aqueous aluminum-ion batteries. Wang B; Tang Y; Deng T; Zhu J; Sun B; Su Y; Ti R; Yang J; Wu W; Cheng N; Zhang C; Lu X; Xu Y; Liang J Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38848693 [TBL] [Abstract][Full Text] [Related]
6. Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries. Jiang M; Fu C; Meng P; Ren J; Wang J; Bu J; Dong A; Zhang J; Xiao W; Sun B Adv Mater; 2022 Jan; 34(2):e2102026. PubMed ID: 34668245 [TBL] [Abstract][Full Text] [Related]
7. Electrolyte and Additive Engineering for Zn Anode Interfacial Regulation in Aqueous Zinc Batteries. Xu S; Huang J; Wang G; Dou Y; Yuan D; Lin L; Qin K; Wu K; Liu HK; Dou SX; Wu C Small Methods; 2024 Jun; 8(6):e2300268. PubMed ID: 37317019 [TBL] [Abstract][Full Text] [Related]
8. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908 [TBL] [Abstract][Full Text] [Related]
9. Toward Long-Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes. Liu Y; Liu Y; Wu X Chem Rec; 2022 Oct; 22(10):e202200088. PubMed ID: 35652535 [TBL] [Abstract][Full Text] [Related]
10. An artificial aluminum-tin alloy layer on aluminum metal anodes for ultra-stable rechargeable aluminum-ion batteries. Wang X; Zhao C; Luo P; Xin Y; Ge Y; Tian H Nanoscale; 2024 Jul; 16(27):13171-13182. PubMed ID: 38913445 [TBL] [Abstract][Full Text] [Related]
11. Design Strategies toward High-Performance Zn Metal Anode. Nie W; Cheng H; Sun Q; Liang S; Lu X; Lu B; Zhou J Small Methods; 2024 Jun; 8(6):e2201572. PubMed ID: 36840645 [TBL] [Abstract][Full Text] [Related]
12. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries. Nayem SMA; Islam S; Mohamed M; Shaheen Shah S; Ahammad AJS; Aziz MA Chem Rec; 2024 Jan; 24(1):e202300005. PubMed ID: 36807755 [TBL] [Abstract][Full Text] [Related]
13. Potential-Dependent Passivation of Zinc Metal in a Sulfate-Based Aqueous Electrolyte. Kwon KY; Kim SJ; Kim DM; Kim H; Mohanty SK; Lee KT; Yoo HD Langmuir; 2021 Nov; 37(45):13218-13224. PubMed ID: 34738813 [TBL] [Abstract][Full Text] [Related]
14. Challenges and Strategies of Aluminum Anodes for High-Performance Aluminum-Air Batteries. Zhang Y; Lv C; Zhu Y; Kuang J; Wang H; Li Y; Tang Y Small Methods; 2024 May; 8(5):e2300911. PubMed ID: 38150657 [TBL] [Abstract][Full Text] [Related]
15. Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries. Zheng J; Huang Z; Ming F; Zeng Y; Wei B; Jiang Q; Qi Z; Wang Z; Liang H Small; 2022 May; 18(21):e2200006. PubMed ID: 35261146 [TBL] [Abstract][Full Text] [Related]
16. Optimization of an Artificial Solid Electrolyte Interphase Formed on an Aluminum Anode and Its Application in Rechargeable Aqueous Aluminum Batteries. Li C; Lv Z; Du H; Zhao L; Yao J; Han Y; Chen H; Zhang G; Bian Y ACS Appl Mater Interfaces; 2023 Nov; 15(43):50166-50173. PubMed ID: 37870466 [TBL] [Abstract][Full Text] [Related]
17. Engineering Triple-Phase Interfaces around the Anode toward Practical Alkali Metal-Air Batteries. Ge B; Hu L; Yu X; Wang L; Fernandez C; Yang N; Liang Q; Yang QH Adv Mater; 2024 Jul; 36(27):e2400937. PubMed ID: 38634714 [TBL] [Abstract][Full Text] [Related]
18. Boosting the Performance of Aluminum-Air Batteries by Interface Modification. Lu Y; Zhu Y; Chen Z; Chen C; Li X; Yu H; Peng K; Tian Z ACS Appl Mater Interfaces; 2024 Jul; 16(29):37818-37828. PubMed ID: 39004817 [TBL] [Abstract][Full Text] [Related]
19. Electrolyte Solvation Chemistry for Stabilizing the Zn Anode via Functionalized Organic Agents. Zhang Y; Fu X; Ding Y; Liu Y; Zhao Y; Jiao S Small; 2024 Jul; 20(28):e2311407. PubMed ID: 38351471 [TBL] [Abstract][Full Text] [Related]
20. Highly Stable Aqueous/Organic Hybrid Zinc-Ion Batteries Based on a Synergistic Cathode/Anode Interface Engineering. Zhou J; Wu F; Mei Y; Ma W; Li L; Chen R ACS Nano; 2024 Jan; 18(1):839-848. PubMed ID: 38108612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]