These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37584271)
1. One-year results for myopia control with aspheric base curve orthokeratology lenses: A prospective randomised clinical trial. Liu T; Chen C; Ma W; Yang B; Wang X; Liu L Ophthalmic Physiol Opt; 2023 Nov; 43(6):1469-1477. PubMed ID: 37584271 [TBL] [Abstract][Full Text] [Related]
2. The effects of base curve aspheric orthokeratology lenses on corneal topography and peripheral refraction: A randomized prospective trial. Liu T; Ma W; Wang J; Yang B; Dong G; Chen C; Wang X; Liu L Cont Lens Anterior Eye; 2023 Jun; 46(3):101814. PubMed ID: 36681621 [TBL] [Abstract][Full Text] [Related]
3. One-year results of the Variation of Orthokeratology Lens Treatment Zone (VOLTZ) Study: a prospective randomised clinical trial. Guo B; Cheung SW; Kojima R; Cho P Ophthalmic Physiol Opt; 2021 Jul; 41(4):702-714. PubMed ID: 33991112 [TBL] [Abstract][Full Text] [Related]
4. The relationship between myopia progression and axial elongation in children wearing orthokeratology contact lenses. Chen Z; Zhang Z; Xue F; Zhou J; Zeng L; Qu X; Zhou X Cont Lens Anterior Eye; 2023 Feb; 46(1):101517. PubMed ID: 34625345 [TBL] [Abstract][Full Text] [Related]
5. Treatment zone decentration promotes retinal reshaping in Chinese myopic children wearing orthokeratology lenses. Li X; Huang Y; Zhang J; Ding C; Chen Y; Chen H; Bao J Ophthalmic Physiol Opt; 2022 Sep; 42(5):1124-1132. PubMed ID: 35598145 [TBL] [Abstract][Full Text] [Related]
6. Nasal-temporal asymmetric changes in retinal peripheral refractive error in myopic adolescents induced by overnight orthokeratology lenses. Chen X; Xiong Y; Qi X; Liu L Front Neurol; 2022; 13():1006112. PubMed ID: 36938370 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of orthokeratology lens with the modified small treatment zone on myopia progression and visual quality: a randomized clinical trial. Gong G; Zhang BN; Guo T; Liu G; Zhang J; Zhang XJ; Du X Eye Vis (Lond); 2024 Sep; 11(1):35. PubMed ID: 39218909 [TBL] [Abstract][Full Text] [Related]
8. Myopia Control Effect Is Influenced by Baseline Relative Peripheral Refraction in Children Wearing Defocus Incorporated Multiple Segments (DIMS) Spectacle Lenses. Zhang H; Lam CSY; Tang WC; Leung M; Qi H; Lee PH; To CH J Clin Med; 2022 Apr; 11(9):. PubMed ID: 35566423 [TBL] [Abstract][Full Text] [Related]
9. Effect of Orthokeratology on Axial Length Elongation in Anisomyopic Children. Zhang Y; Chen Y Optom Vis Sci; 2019 Jan; 96(1):43-47. PubMed ID: 30570595 [TBL] [Abstract][Full Text] [Related]
10. Peripheral refraction, relative peripheral refraction, and axial growth: 18-month data from the randomised study-Clinical study Of Near-sightedness; TReatment with Orthokeratology Lenses (CONTROL study). Jakobsen TM; Søndergaard AP; Møller F Acta Ophthalmol; 2023 Feb; 101(1):e69-e80. PubMed ID: 35941831 [TBL] [Abstract][Full Text] [Related]
11. Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology. Hu Y; Wen C; Li Z; Zhao W; Ding X; Yang X Br J Ophthalmol; 2019 Nov; 103(11):1571-1575. PubMed ID: 30705043 [TBL] [Abstract][Full Text] [Related]
12. Alterations in peripheral refraction with spectacles, soft contact lenses and orthokeratology during near viewing: implications for myopia control. Damani JM; Annasagaram M; Kumar P; Verkicharla PK Clin Exp Optom; 2022 Sep; 105(7):761-770. PubMed ID: 34538199 [TBL] [Abstract][Full Text] [Related]
13. One-year results of 0.01% atropine with orthokeratology (AOK) study: a randomised clinical trial. Tan Q; Ng AL; Choy BN; Cheng GP; Woo VC; Cho P Ophthalmic Physiol Opt; 2020 Sep; 40(5):557-566. PubMed ID: 32776533 [TBL] [Abstract][Full Text] [Related]
14. [Correlation between the increase in corneal higher-order aberrations and the control of children's myopic anisometropia after wearing orthokeratology lenses]. Sun XX; Zhang Y; Chen YG Zhonghua Yan Ke Za Zhi; 2022 Apr; 58(4):250-258. PubMed ID: 35391511 [No Abstract] [Full Text] [Related]
15. Clinical efficacy of toric orthokeratology in myopic adolescent with moderate to high astigmatism. Luo M; Ma S; Liang N Eye Sci; 2014 Dec; 29(4):209-13, 218. PubMed ID: 26016072 [TBL] [Abstract][Full Text] [Related]
16. Myopia control using toric orthokeratology (TO-SEE study). Chen C; Cheung SW; Cho P Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6510-7. PubMed ID: 24003088 [TBL] [Abstract][Full Text] [Related]
17. Impact of peripheral optical properties induced by orthokeratology lens use on myopia progression. Yoo YS; Kim DY; Byun YS; Ji Q; Chung IK; Whang WJ; Park MR; Kim HS; Na KS; Joo CK; Yoon G Heliyon; 2020 Apr; 6(4):e03642. PubMed ID: 32274428 [TBL] [Abstract][Full Text] [Related]
18. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length. Li Z; Hu Y; Cui D; Long W; He M; Yang X Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939 [TBL] [Abstract][Full Text] [Related]
19. Effect of orthokeratology on axial length elongation in moderate myopic and fellow high myopic eyes of children. Yu LH; Jin WQ; Mao XJ; Jiang J Clin Exp Optom; 2021 Jan; 104(1):22-27. PubMed ID: 32266747 [TBL] [Abstract][Full Text] [Related]
20. Changes in Peripheral Refractive Profile after Orthokeratology for Different Degrees of Myopia. González-Méijome JM; Faria-Ribeiro MA; Lopes-Ferreira DP; Fernandes P; Carracedo G; Queiros A Curr Eye Res; 2016; 41(2):199-207. PubMed ID: 25803198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]