These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37584343)

  • 41. Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: A single nanozyme mimicking multi-enzymatic cascade systems in peroxisome.
    Liu Y; Qin Y; Zhang Q; Zou W; Jin L; Guo R
    J Colloid Interface Sci; 2021 Oct; 600():37-48. PubMed ID: 34010774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prussian Blue: A Nanozyme with Versatile Catalytic Properties.
    Estelrich J; Busquets MA
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34206067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration.
    Kurian AG; Singh RK; Sagar V; Lee JH; Kim HW
    Nanomicro Lett; 2024 Feb; 16(1):110. PubMed ID: 38321242
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional catalytic nanoparticles (nanozymes) for sensing.
    Ouyang Y; O'Hagan MP; Willner I
    Biosens Bioelectron; 2022 Dec; 218():114768. PubMed ID: 36240630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prussian Blue Nanozymes Prevent Anthracycline-Induced Liver Injury by Attenuating Oxidative Stress and Regulating Inflammation.
    Bai H; Kong F; Feng K; Zhang X; Dong H; Liu D; Ma M; Liu F; Gu N; Zhang Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42382-42395. PubMed ID: 34473471
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory treatment of myocardial ischemia reperfusion injury.
    Hou M; Wu X; Zhao Z; Deng Q; Chen Y; Yin L
    Acta Biomater; 2022 Apr; 143():344-355. PubMed ID: 35189380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway.
    Yu Y; Zhao S; Gu D; Zhu B; Liu H; Wu W; Wu J; Wei H; Miao L
    Nanoscale; 2022 Feb; 14(7):2628-2637. PubMed ID: 35088792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering Antioxidative Cascade Metal-Phenolic Nanozymes for Alleviating Oxidative Stress during Extracorporeal Blood Purification.
    Wei Z; Peng G; Zhao Y; Chen S; Wang R; Mao H; Xie Y; Zhao C
    ACS Nano; 2022 Nov; 16(11):18329-18343. PubMed ID: 36356207
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron transfer-based antioxidant nanozymes: Emerging therapeutics for inflammatory diseases.
    Zhao J; Guo F; Hou L; Zhao Y; Sun P
    J Control Release; 2023 Mar; 355():273-291. PubMed ID: 36731800
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Therapeutic Applications of Nanozymes in Chronic Inflammatory Diseases.
    Wang H; Cui Z; Wang X; Sun S; Zhang D; Fu C
    Biomed Res Int; 2021; 2021():9980127. PubMed ID: 34423042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal-Organic Framework Derived Nanozymes in Biomedicine.
    Wang D; Jana D; Zhao Y
    Acc Chem Res; 2020 Jul; 53(7):1389-1400. PubMed ID: 32597637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cu-GA-coordination polymer nanozymes with triple enzymatic activity for wound disinfection and accelerated wound healing.
    Tian H; Yan J; Zhang W; Li H; Jiang S; Qian H; Chen X; Dai X; Wang X
    Acta Biomater; 2023 Sep; 167():449-462. PubMed ID: 37270076
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Next-Generation Therapeutics.
    Singh N; Sherin GR; Mugesh G
    Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202301232. PubMed ID: 37083312
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multilayer polyion complex nanoformulations of superoxide dismutase 1 for acute spinal cord injury.
    Nukolova NV; Aleksashkin AD; Abakumova TO; Morozova AY; Gubskiy IL; Kirzhanova ЕА; Abakumov MA; Chekhonin VP; Klyachko NL; Kabanov AV
    J Control Release; 2018 Jan; 270():226-236. PubMed ID: 29196042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds.
    Becker K; Schroecksnadel S; Gostner J; Zaknun C; Schennach H; Uberall F; Fuchs D
    Phytomedicine; 2014 Jan; 21(2):164-71. PubMed ID: 24041614
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering core-shell chromium nanozymes with inflammation-suppressing, ROS-scavenging and antibacterial properties for pulpitis treatment.
    Xie F; Zhu C; Gong L; Zhu N; Ma Q; Yang Y; Zhao X; Qin M; Lin Z; Wang Y
    Nanoscale; 2023 Sep; 15(34):13971-13986. PubMed ID: 37606502
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light-activated nanozymes: catalytic mechanisms and applications.
    Zhang J; Liu J
    Nanoscale; 2020 Feb; 12(5):2914-2923. PubMed ID: 31993620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering ROS-scavenging Prussian blue nanozymes for efficient atherosclerosis nanotherapy.
    Chen X; Dai C; Hu R; Yu L; Chen Y; Zhang B
    J Mater Chem B; 2023 Mar; 11(9):1881-1890. PubMed ID: 36723250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mitochondria-targeted supramolecular coordination container encapsulated with exogenous itaconate for synergistic therapy of joint inflammation.
    Chen X; Li C; Cao X; Jia X; Chen X; Wang Z; Xu W; Dai F; Zhang S
    Theranostics; 2022; 12(7):3251-3272. PubMed ID: 35547753
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.