These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37584440)

  • 1. Enzyme-Compatible Core-Shell Nanoreactor for in Situ H
    Wang M; Dai H; Yang Q
    Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202309929. PubMed ID: 37584440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodium-Based MOF-on-MOF Difunctional Core-Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization.
    Zhang Y; Wei B; Liang H
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3442-3454. PubMed ID: 36609187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy of metal nanoparticles and organometallic complex in NAD(P)H regeneration via relay hydrogenation.
    Wang M; Zhao Z; Li C; Li H; Liu J; Yang Q
    Nat Commun; 2022 Sep; 13(1):5699. PubMed ID: 36171210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Biocatalytic Synthesis of a Metal Nanoparticle-Enzyme Hybrid: Demonstration for Catalytic H
    Browne LBF; Sudmeier T; Landis MA; Allen CS; Vincent KA
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202404024. PubMed ID: 38641561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Versatile Chemoenzymatic Nanoreactor that Mimics NAD(P)H Oxidase for the In Situ Regeneration of Cofactors.
    Rodriguez-Abetxuko A; Reifs A; Sánchez-deAlcázar D; Beloqui A
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202206926. PubMed ID: 35762738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemo-bio catalysis using carbon supports: application in H
    Zhao X; Cleary SE; Zor C; Grobert N; Reeve HA; Vincent KA
    Chem Sci; 2021 May; 12(23):8105-8114. PubMed ID: 34194700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supported Pt Enabled Proton-Driven NAD(P)
    Burnett JWH; Chen H; Li J; Li Y; Huang S; Shi J; McCue AJ; Howe RF; Minteer SD; Wang X
    ACS Appl Mater Interfaces; 2022 May; 14(18):20943-20952. PubMed ID: 35482431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafine palladium nanoparticles confined in core-shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst.
    Yang J; Zhu Y; Fan M; Sun X; Wang WD; Dong Z
    J Colloid Interface Sci; 2019 Oct; 554():157-165. PubMed ID: 31295687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Active Nanoreactors: Patchlike or Thick Ni Coating on Pt Nanoparticles Based on Confined Catalysis.
    Qi X; Li X; Chen B; Lu H; Wang L; He G
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1922-8. PubMed ID: 26725500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative Catalysis of an Alcohol Dehydrogenase and Rhodium-Modified Periodic Mesoporous Organosilica.
    Himiyama T; Waki M; Maegawa Y; Inagaki S
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9150-9154. PubMed ID: 31025503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Coupled System of Ni
    Tian S; Long G; Zhou P; Liu F; Zhang X; Ding C; Li C
    J Am Chem Soc; 2024 Jun; 146(23):15730-15739. PubMed ID: 38776525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches.
    Lee YS; Gerulskis R; Minteer SD
    Curr Opin Biotechnol; 2022 Feb; 73():14-21. PubMed ID: 34246871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic recycling of NAD(P)H.
    Fukuzumi S; Lee YM; Nam W
    J Inorg Biochem; 2019 Oct; 199():110777. PubMed ID: 31376683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards recyclable NAD(P)H regeneration catalysts.
    de Torres M; Dimroth J; Arends IW; Keilitz J; Hollmann F
    Molecules; 2012 Aug; 17(8):9835-41. PubMed ID: 22895028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Membrane Nanoreactor with Cu-Ag
    Chen Y; Fan S; Chen J; Deng L; Xiao Z
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9106-9115. PubMed ID: 35143180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.
    Soldevila-Barreda JJ; Habtemariam A; Romero-Canelón I; Sadler PJ
    J Inorg Biochem; 2015 Dec; 153():322-333. PubMed ID: 26601938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Selectivity Cofactor NADH Regeneration Organic Iridium Complexes Used for High-Efficiency Chem-Enzyme Cascade Catalytic Hydrogen Transfer.
    Zhao LJ; Zhang C; Zhang S; Lv X; Chen J; Sun X; Su H; Murayama T; Qi C
    Inorg Chem; 2023 Oct; 62(43):17577-17582. PubMed ID: 37843583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Photocatalytic NADH Regeneration by Covalently Metalated Carbon Nitride for Enhanced CO
    Zhang Y; Liu J
    Chemistry; 2022 Oct; 28(55):e202201430. PubMed ID: 35758216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared light-driven asymmetric photolytic reduction of ketone using inorganic-enzyme hybrid biocatalyst.
    Qiao L; Zhang J; Jiang Y; Ma B; Chen H; Gao P; Zhang P; Wang A; Sheldon RA
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130612. PubMed ID: 38447845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.