These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37584639)

  • 1. Tunable resins with PDMS-like elastic modulus for stereolithographic 3D-printing of multimaterial microfluidic actuators.
    Ahmadianyazdi A; Miller IJ; Folch A
    Lab Chip; 2023 Sep; 23(18):4019-4032. PubMed ID: 37584639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography.
    Kim YT; Ahmadianyazdi A; Folch A
    Nat Protoc; 2023 Apr; 18(4):1243-1259. PubMed ID: 36609643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatible PEGDA Resin for 3D Printing.
    Warr C; Valdoz JC; Bickham BP; Knight CJ; Franks NA; Chartrand N; Van Ry PM; Christensen KA; Nordin GP; Cook AD
    ACS Appl Bio Mater; 2020 Apr; 3(4):2239-2244. PubMed ID: 32467881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desktop-Stereolithography 3D-Printing of a Poly(dimethylsiloxane)-Based Material with Sylgard-184 Properties.
    Bhattacharjee N; Parra-Cabrera C; Kim YT; Kuo AP; Folch A
    Adv Mater; 2018 May; 30(22):e1800001. PubMed ID: 29656459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Non-Cytotoxic Resin for Micro-Stereolithography for Cell Cultures of HUVECs.
    Männel MJ; Fischer C; Thiele J
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions.
    Mea HJ; Delgadillo L; Wan J
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14790-14797. PubMed ID: 32541054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Precision Stereolithography of Biomicrofluidic Devices.
    Kuo AP; Bhattacharjee N; Lee YS; Castro K; Kim YT; Folch A
    Adv Mater Technol; 2019 Jun; 4(6):. PubMed ID: 32490168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed Quake-style microvalves and micropumps.
    Lee YS; Bhattacharjee N; Folch A
    Lab Chip; 2018 Apr; 18(8):1207-1214. PubMed ID: 29553156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication of degradable, serrated polyethylene diacrylate microneedles using stereolithography.
    Joshi V; Singh N; Datta P
    Pharm Dev Technol; 2024 Nov; 29(9):976-986. PubMed ID: 39364615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Viscosity Polydimethylsiloxane Resin for Facile 3D Printing of Elastomeric Microfluidics.
    Fleck E; Keck C; Ryszka K; DeNatale E; Potkay J
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printing of transparent bio-microfluidic devices in PEG-DA.
    Urrios A; Parra-Cabrera C; Bhattacharjee N; Gonzalez-Suarez AM; Rigat-Brugarolas LG; Nallapatti U; Samitier J; DeForest CA; Posas F; Garcia-Cordero JL; Folch A
    Lab Chip; 2016 Jun; 16(12):2287-94. PubMed ID: 27217203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
    Musgrove HB; Catterton MA; Pompano RR
    Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Soft Transparent Patient-Specific Vascular Models with Stereolithographic 3D printing and Thiol-Based Photopolymerizable Coatings.
    Hosseinzadeh E; Bosques-Palomo B; Carmona-Arriaga F; Fabiani MA; Aguirre-Soto A
    Macromol Rapid Commun; 2024 Mar; 45(6):e2300611. PubMed ID: 38158746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed bio-ceramic loaded PEGDA/vitreous carbon composite: Fabrication, characterization, and life cycle assessment.
    Kumar M; Sharma V
    J Mech Behav Biomed Mater; 2023 Jul; 143():105904. PubMed ID: 37178637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.