BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3758476)

  • 1. Cranial neural crest cells exhibit directed migration on the pronephric duct pathway: further evidence for an in vivo adhesion gradient.
    Zackson SL; Steinberg MS
    Dev Biol; 1986 Oct; 117(2):342-53. PubMed ID: 3758476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular marker for cell guidance information in the axolotl embryo.
    Zackson SL; Steinberg MS
    Dev Biol; 1988 Jun; 127(2):435-42. PubMed ID: 3378673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemotaxis or adhesion gradient? Pronephric duct elongation does not depend on distant sources of guidance information.
    Zackson SL; Steinberg MS
    Dev Biol; 1987 Dec; 124(2):418-22. PubMed ID: 3678606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pronephric duct extension in amphibian embryos: migration and other mechanisms.
    Drawbridge J; Meighan CM; Lumpkins R; Kite ME
    Dev Dyn; 2003 Jan; 226(1):1-11. PubMed ID: 12508219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphibian pronephric duct morphogenesis: segregation, cell rearrangement and directed migration of the Ambystoma duct rudiment.
    Poole TJ; Steinberg MS
    J Embryol Exp Morphol; 1981 Jun; 63():1-16. PubMed ID: 7310283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different modes of pronephric duct origin among vertebrates.
    Poole TJ; Steinberg MS
    Scan Electron Microsc; 1984; (Pt 1):475-82. PubMed ID: 6740242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The epidermis is a source of directional information for the migrating pronephric duct in Ambystoma mexicanum embryos.
    Drawbridge J; Wolfe AE; Delgado YL; Steinberg MS
    Dev Biol; 1995 Dec; 172(2):440-51. PubMed ID: 8612962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axolotl pronephric duct migration requires an epidermally derived, laminin 1-containing extracellular matrix and the integrin receptor alpha6beta1.
    Morris AR; Drawbridge J; Steinberg MS
    Development; 2003 Dec; 130(23):5601-8. PubMed ID: 14522870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three populations of migrating amphibian embryonic cells utilize different guidance cues.
    Thibaudeau G; Drawbridge J; Dollarhide AW; Haque T; Steinberg MS
    Dev Biol; 1993 Oct; 159(2):657-68. PubMed ID: 8405687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell rearrangement and directional migration in pronephric duct development.
    Poole TJ
    Scanning Microsc; 1988 Mar; 2(1):411-5. PubMed ID: 3368767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl.
    Cerny R; Meulemans D; Berger J; Wilsch-Bräuninger M; Kurth T; Bronner-Fraser M; Epperlein HH
    Dev Biol; 2004 Feb; 266(2):252-69. PubMed ID: 14738875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control of pigment cell pattern formation in the California newt, Taricha torosa.
    Tucker RP; Erickson CA
    J Embryol Exp Morphol; 1986 Sep; 97():141-68. PubMed ID: 3794598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphogenesis of the axolotl pronephric duct: a model system for the study of cell migration in vivo.
    Drawbridge J; Steinberg MS
    Int J Dev Biol; 1996 Aug; 40(4):709-13. PubMed ID: 8877443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scanning electron microscope survey of the origin of the primordial pronephric duct cells in the avian embryo.
    Jarzem J; Meier SP
    Anat Rec; 1987 Jun; 218(2):175-81. PubMed ID: 3619085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origins of neural crest cells in the axolotl.
    Moury JD; Jacobson AG
    Dev Biol; 1990 Oct; 141(2):243-53. PubMed ID: 2210034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence for a proteinaceous presegmental wave required for morphogenesis of axolotl mesoderm.
    Gillespie LL; Armstrong JB; Steinberg MS
    Dev Biol; 1985 Jan; 107(1):220-6. PubMed ID: 3965323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elongation of axolotl tailbud embryos requires GPI-linked proteins and organizer-induced, active, ventral trunk endoderm cell rearrangements.
    Drawbridge J; Steinberg MS
    Dev Biol; 2000 Jul; 223(1):27-37. PubMed ID: 10864458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural crest cell migration in relation to extracellular matrix organization in the embryonic axolotl trunk.
    Löfberg J; Ahlfors K; Fällström C
    Dev Biol; 1980 Mar; 75(1):148-67. PubMed ID: 7371990
    [No Abstract]   [Full Text] [Related]  

  • 19. Neural fold and neural crest movement in the Mexican salamander Ambystoma mexicanum.
    Brun RB
    J Exp Zool; 1985 Apr; 234(1):57-61. PubMed ID: 3989498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for specifying form and pattern: adhesion-guided multicellular assembly.
    Steinberg MS; Poole TJ
    Philos Trans R Soc Lond B Biol Sci; 1981 Oct; 295(1078):451-60. PubMed ID: 6117905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.