BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37584778)

  • 21. Physical Properties and Interaction With the Ocular Surface of Water-Gradient Contact Lenses.
    Ponzini E; Recchioni A; Cheloni R; Zeri F; Tavazzi S
    Eye Contact Lens; 2023 Apr; 49(4):152-159. PubMed ID: 36811833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitation of cholesterol and phospholipid sorption on silicone hydrogel contact lenses.
    Pitt WG; Perez KX; Tam NK; Handly E; Chinn JA; Liu XM; Maziarz EP
    J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1516-23. PubMed ID: 23744756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast versus gradual adaptation of soft monthly contact lenses in neophyte wearers.
    Wolffsohn JS; Ghorbani-Mojarrad N; Vianya-Estopa M; Nagra M; Huntjens B; Terry L; Sweeney LE; Dutta D; Joshi MR; Wright D; Bruce H; Hallam E; Jolly L; Chung YB; En Tsen JR; Bishop A; Davison R; Maldonado-Codina C;
    Cont Lens Anterior Eye; 2022 Aug; 45(4):101469. PubMed ID: 34034960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The efficiency of contact lens care regimens on protein removal from hydrogel and silicone hydrogel lenses.
    Luensmann D; Heynen M; Liu L; Sheardown H; Jones L
    Mol Vis; 2010 Jan; 16():79-92. PubMed ID: 20098668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Air Exposure Time on the Water Contact Angles of Daily Disposable Silicone Hydrogels.
    Eftimov P; Yokoi N; Peev N; Georgiev GA
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.
    Lai YC; Friends GD
    J Biomed Mater Res; 1997 Jun; 35(3):349-56. PubMed ID: 9138069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uptake and release of ciprofloxacin-HCl from conventional and silicone hydrogel contact lens materials.
    Hui A; Boone A; Jones L
    Eye Contact Lens; 2008 Sep; 34(5):266-71. PubMed ID: 18779666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatic dispersion of soft contact lens materials.
    Spychala B; Ehrmann K
    Cont Lens Anterior Eye; 2023 Aug; 46(4):101864. PubMed ID: 37244801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent solute-partitioning characterization of layered soft contact lenses.
    Dursch TJ; Liu DE; Oh Y; Radke CJ
    Acta Biomater; 2015 Mar; 15():48-54. PubMed ID: 25484335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen transmissibility of piggyback systems with conventional soft and silicone hydrogel contact lenses.
    López-Alemany A; González-Méijome JM; Almeida JB; Parafita MA; Refojo MF
    Cornea; 2006 Feb; 25(2):214-9. PubMed ID: 16371786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of comfort and visual quality after the insertion of soft contact lenses.
    Carpena-Torres C; Pastrana C; Rodríguez-Pomar C; Serramito M; Carracedo G
    Cont Lens Anterior Eye; 2022 Aug; 45(4):101498. PubMed ID: 34373201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micromechanical measurement of adhesion of dehydrating silicone hydrogel contact lenses to corneal tissue.
    Zhu D; Liu Y; Gilbert JL
    Acta Biomater; 2021 Jun; 127():242-251. PubMed ID: 33812075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the Degree of Disorder of the Structure of Polymer Soft Contact Lenses Using Positron Annihilation Lifetime Spectroscopy PALS.
    Filipecki J; Kotynia K; Filipecka K
    Polim Med; 2016; 46(1):17-23. PubMed ID: 28397415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials.
    Kodjikian L; Casoli-Bergeron E; Malet F; Janin-Manificat H; Freney J; Burillon C; Colin J; Steghens JP
    Graefes Arch Clin Exp Ophthalmol; 2008 Feb; 246(2):267-73. PubMed ID: 17987309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depth Profile Assessment of the Early Phase Deposition of Lysozyme on Soft Contact Lens Materials Using a Novel In Vitro Eye Model.
    Qiao H; Phan CM; Walther H; Subbaraman LN; Jones L
    Eye Contact Lens; 2018 Nov; 44 Suppl 2():S11-S18. PubMed ID: 28617725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The short-term effect of contact lens wear on blink characteristics.
    Navascues-Cornago M; Sun T; Read ML; Morgan PB
    Cont Lens Anterior Eye; 2022 Oct; 45(5):101596. PubMed ID: 35466057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ex vivo analysis of cholesterol deposition for commercially available silicone hydrogel contact lenses using a fluorometric enzymatic assay.
    Nash WL; Gabriel MM
    Eye Contact Lens; 2014 Sep; 40(5):277-82. PubMed ID: 25099866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selectivity and localization of lysozyme uptake in contemporary hydrogel contact lens materials.
    Heynen M; Babaei Omali N; Fadli Z; Coles-Brennan C; Subbaraman LN; Jones L
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1351-1364. PubMed ID: 28539099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of a rinse step on protein removal from silicone hydrogel contact lenses.
    Pucker AD; Nichols JJ
    Optom Vis Sci; 2009 Aug; 86(8):943-7. PubMed ID: 19609231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative clinical performance of rigid versus soft hyper Dk contact lenses used for continuous wear.
    Maldonado-Codina C; Morgan PB; Efron N; Efron S
    Optom Vis Sci; 2005 Jun; 82(6):536-48. PubMed ID: 15976592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.