These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37584815)
1. Strong biological correlations as a cause of autonomous oscillations in epidemics. Dimaschko J; Shlyakhover V; Iabluchanskyi M J Math Biol; 2023 Aug; 87(3):44. PubMed ID: 37584815 [TBL] [Abstract][Full Text] [Related]
2. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase. Britton T; Juher D; Saldaña J Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576 [TBL] [Abstract][Full Text] [Related]
3. A hierarchical intervention scheme based on epidemic severity in a community network. He R; Luo X; Asamoah JKK; Zhang Y; Li Y; Jin Z; Sun GQ J Math Biol; 2023 Jul; 87(2):29. PubMed ID: 37452969 [TBL] [Abstract][Full Text] [Related]
4. Relative prevalence-based dispersal in an epidemic patch model. Lu M; Gao D; Huang J; Wang H J Math Biol; 2023 Mar; 86(4):52. PubMed ID: 36877332 [TBL] [Abstract][Full Text] [Related]
5. Approximation of epidemic models by diffusion processes and their statistical inference. Guy R; Larédo C; Vergu E J Math Biol; 2015 Feb; 70(3):621-46. PubMed ID: 24671428 [TBL] [Abstract][Full Text] [Related]
6. Demographic population cycles and ℛ van den Driessche P; Yakubu AA J Biol Dyn; 2018 Dec; 12(1):961-982. PubMed ID: 30373469 [TBL] [Abstract][Full Text] [Related]
7. Global stability for epidemic models on multiplex networks. Huang YJ; Juang J; Liang YH; Wang HY J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277 [TBL] [Abstract][Full Text] [Related]
8. The impact of household structure on disease-induced herd immunity. Ball F; Critcher L; Neal P; Sirl D J Math Biol; 2023 Nov; 87(6):83. PubMed ID: 37938449 [TBL] [Abstract][Full Text] [Related]
9. Feasibility of sparse large Lotka-Volterra ecosystems. Akjouj I; Najim J J Math Biol; 2022 Nov; 85(6-7):66. PubMed ID: 36374355 [TBL] [Abstract][Full Text] [Related]
10. On the uniqueness of epidemic models fitting a normalized curve of removed individuals. Bilge AH; Samanlioglu F; Ergonul O J Math Biol; 2015 Oct; 71(4):767-94. PubMed ID: 25312413 [TBL] [Abstract][Full Text] [Related]
11. SIS and SIR Epidemic Models Under Virtual Dispersal. Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419 [TBL] [Abstract][Full Text] [Related]
12. On time-discretized versions of the stochastic SIS epidemic model: a comparative analysis. Gómez-Corral A; López-García M; Rodríguez-Bernal MT J Math Biol; 2021 Apr; 82(5):46. PubMed ID: 33813610 [TBL] [Abstract][Full Text] [Related]
13. On the Threshold of Release of Confinement in an Epidemic SEIR Model Taking into Account the Protective Effect of Mask. Auger P; Moussaoui A Bull Math Biol; 2021 Feb; 83(4):25. PubMed ID: 33594478 [TBL] [Abstract][Full Text] [Related]
14. Modified diffusive epidemic process on Apollonian networks. Alencar D; Filho A; Alves T; Alves G; Ferreira R; Lima F J Biol Phys; 2023 Sep; 49(3):329-343. PubMed ID: 37118345 [TBL] [Abstract][Full Text] [Related]
15. On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion. Wang ZA; Xu J J Math Biol; 2021 Jan; 82(1-2):7. PubMed ID: 33491122 [TBL] [Abstract][Full Text] [Related]
16. SIR epidemics and vaccination on random graphs with clustering. Fransson C; Trapman P J Math Biol; 2019 Jun; 78(7):2369-2398. PubMed ID: 30972440 [TBL] [Abstract][Full Text] [Related]
17. Mathematical analysis of a measles transmission dynamics model in Bangladesh with double dose vaccination. Kuddus MA; Mohiuddin M; Rahman A Sci Rep; 2021 Aug; 11(1):16571. PubMed ID: 34400667 [TBL] [Abstract][Full Text] [Related]
18. Commentary on the use of the reproduction number Vegvari C; Abbott S; Ball F; Brooks-Pollock E; Challen R; Collyer BS; Dangerfield C; Gog JR; Gostic KM; Heffernan JM; Hollingsworth TD; Isham V; Kenah E; Mollison D; Panovska-Griffiths J; Pellis L; Roberts MG; Scalia Tomba G; Thompson RN; Trapman P Stat Methods Med Res; 2022 Sep; 31(9):1675-1685. PubMed ID: 34569883 [TBL] [Abstract][Full Text] [Related]
19. The Hybrid Incidence Susceptible-Transmissible-Removed Model for Pandemics : Scaling Time to Predict an Epidemic's Population Density Dependent Temporal Propagation. Benjamin RL Acta Biotheor; 2022 Jan; 70(1):10. PubMed ID: 35092515 [TBL] [Abstract][Full Text] [Related]
20. Fundamental bound on epidemic overshoot in the SIR model. Nguyen MM; Freedman AS; Ozbay SA; Levin SA J R Soc Interface; 2023 Dec; 20(209):20230322. PubMed ID: 38053384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]