BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37584946)

  • 1. Phospho-Analyst: An Interactive, Easy-to-Use Web Platform To Analyze Quantitative Phosphoproteomics Data.
    Zhang H; Steele JR; Kahrood HV; Lucas DD; Shah AD; Schittenhelm RB
    J Proteome Res; 2023 Sep; 22(9):2890-2899. PubMed ID: 37584946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LFQ-Analyst: An Easy-To-Use Interactive Web Platform To Analyze and Visualize Label-Free Proteomics Data Preprocessed with MaxQuant.
    Shah AD; Goode RJA; Huang C; Powell DR; Schittenhelm RB
    J Proteome Res; 2020 Jan; 19(1):204-211. PubMed ID: 31657565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphomatics: interactive interrogation of substrate-kinase networks in global phosphoproteomics datasets.
    Leeming MG; O'Callaghan S; Licata L; Iannuccelli M; Lo Surdo P; Micarelli E; Ang CS; Nie S; Varshney S; Ameen S; Cheng HC; Williamson NA
    Bioinformatics; 2021 Jul; 37(11):1635-1636. PubMed ID: 33119075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discoverer Software.
    Li S; Zan H; Zhu Z; Lu D; Krall L
    Methods Mol Biol; 2021; 2358():179-187. PubMed ID: 34270055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhosMap: An ensemble bioinformatic platform to empower interactive analysis of quantitative phosphoproteomics.
    Tong M; Liu Z; Li J; Wei X; Shi W; Liang C; Yu C; Huang R; Lin Y; Wang X; Wang S; Wang Y; Huang J; Wang Y; Li T; Qin J; Zhan D; Ji ZL
    Comput Biol Med; 2024 May; 174():108391. PubMed ID: 38613887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and visualization of quantitative proteomics data using FragPipe-Analyst.
    Hsiao Y; Zhang H; Li GX; Deng Y; Yu F; Kahrood HV; Steele JR; Schittenhelm RB; Nesvizhskii AI
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProteoViz: a tool for the analysis and interactive visualization of phosphoproteomics data.
    Storey AJ; Naceanceno KS; Lan RS; Washam CL; Orr LM; Mackintosh SG; Tackett AJ; Edmondson RD; Wang Z; Li HY; Frett B; Kendrick S; Byrum SD
    Mol Omics; 2020 Aug; 16(4):316-326. PubMed ID: 32347222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics.
    Brusniak MY; Bodenmiller B; Campbell D; Cooke K; Eddes J; Garbutt A; Lau H; Letarte S; Mueller LN; Sharma V; Vitek O; Zhang N; Aebersold R; Watts JD
    BMC Bioinformatics; 2008 Dec; 9():542. PubMed ID: 19087345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics.
    van der Mijn JC; Labots M; Piersma SR; Pham TV; Knol JC; Broxterman HJ; Verheul HM; Jiménez CR
    J Proteomics; 2015 Sep; 127(Pt B):259-63. PubMed ID: 25890253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics-Based Profiling of Kinase Activities in Cancer Cells.
    Wirbel J; Cutillas P; Saez-Rodriguez J
    Methods Mol Biol; 2018; 1711():103-132. PubMed ID: 29344887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis.
    Urban J
    Anal Chim Acta; 2022 Mar; 1199():338857. PubMed ID: 35227377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent findings and technological advances in phosphoproteomics for cells and tissues.
    von Stechow L; Francavilla C; Olsen JV
    Expert Rev Proteomics; 2015; 12(5):469-87. PubMed ID: 26400465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphonormalizer: an R package for normalization of MS-based label-free phosphoproteomics.
    Saraei S; Suomi T; Kauko O; Elo LL; Stegle O
    Bioinformatics; 2018 Feb; 34(4):693-694. PubMed ID: 28968644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ProteoSign: an end-user online differential proteomics statistical analysis platform.
    Efstathiou G; Antonakis AN; Pavlopoulos GA; Theodosiou T; Divanach P; Trudgian DC; Thomas B; Papanikolaou N; Aivaliotis M; Acuto O; Iliopoulos I
    Nucleic Acids Res; 2017 Jul; 45(W1):W300-W306. PubMed ID: 28520987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics.
    Cox J; Matic I; Hilger M; Nagaraj N; Selbach M; Olsen JV; Mann M
    Nat Protoc; 2009; 4(5):698-705. PubMed ID: 19373234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SimPhospho: a software tool enabling confident phosphosite assignment.
    Suni V; Suomi T; Tsubosaka T; Imanishi SY; Elo LL; Corthals GL
    Bioinformatics; 2018 Aug; 34(15):2690-2692. PubMed ID: 29596608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in phosphoproteomics and its application to COPD.
    Zeng X; Lan Y; Xiao J; Hu L; Tan L; Liang M; Wang X; Lu S; Peng T; Long F
    Expert Rev Proteomics; 2022; 19(7-12):311-324. PubMed ID: 36730079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells.
    Bodenmiller B; Mueller LN; Pedrioli PG; Pflieger D; Jünger MA; Eng JK; Aebersold R; Tao WA
    Mol Biosyst; 2007 Apr; 3(4):275-86. PubMed ID: 17372656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Search Databases and Statistics: Pitfalls and Best Practices in Phosphoproteomics.
    Refsgaard JC; Munk S; Jensen LJ
    Methods Mol Biol; 2016; 1355():323-39. PubMed ID: 26584936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. msVolcano: A flexible web application for visualizing quantitative proteomics data.
    Singh S; Hein MY; Stewart AF
    Proteomics; 2016 Sep; 16(18):2491-4. PubMed ID: 27440201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.