These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. Gorlin Y; Lassalle-Kaiser B; Benck JD; Gul S; Webb SM; Yachandra VK; Yano J; Jaramillo TF J Am Chem Soc; 2013 Jun; 135(23):8525-34. PubMed ID: 23758050 [TBL] [Abstract][Full Text] [Related]
3. Catalytic Water Electrolysis by Co-Cu-W Mixed Metal Oxides: Insights from X-ray Absorption Spectroelectrochemistry. Gupta N; Segre C; Nickel C; Streb C; Gao D; Glusac KD ACS Appl Mater Interfaces; 2024 Jul; 16(27):35793-35804. PubMed ID: 38949083 [TBL] [Abstract][Full Text] [Related]
4. Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts. Zhu K; Zhu X; Yang W Angew Chem Int Ed Engl; 2019 Jan; 58(5):1252-1265. PubMed ID: 29665168 [TBL] [Abstract][Full Text] [Related]
5. Toward Understanding the Formation Mechanism and OER Catalytic Mechanism of Hydroxides by In Situ and Operando Techniques. Chen Z; Fan Q; Zhou J; Wang X; Huang M; Jiang H; Cölfen H Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202309293. PubMed ID: 37650657 [TBL] [Abstract][Full Text] [Related]
6. Assessing nickel oxide electrocatalysts incorporating diamines and having improved oxygen evolution activity using Miura T; Tsunekawa S; Onishi S; Ina T; Wang K; Watanabe G; Hu C; Kondoh H; Kawai T; Yoshida M Phys Chem Chem Phys; 2021 Oct; 23(40):23280-23287. PubMed ID: 34633002 [TBL] [Abstract][Full Text] [Related]
7. Operando X-Ray Spectroscopic Techniques: A Focus on Hydrogen and Oxygen Evolution Reactions. V VM; Nageswaran G Front Chem; 2020; 8():23. PubMed ID: 32083053 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by Balaghi SE; Mehrabani S; Mousazade Y; Bagheri R; Sologubenko AS; Song Z; Patzke GR; Najafpour MM ACS Appl Mater Interfaces; 2021 May; 13(17):19927-19937. PubMed ID: 33886278 [TBL] [Abstract][Full Text] [Related]
9. Optimized NiFe-Based Coordination Polymer Catalysts: Sulfur-Tuning and Operando Monitoring of Water Oxidation. Zhao Y; Wan W; Dongfang N; Triana CA; Douls L; Huang C; Erni R; Iannuzzi M; Patzke GR ACS Nano; 2022 Sep; 16(9):15318-15327. PubMed ID: 36069492 [TBL] [Abstract][Full Text] [Related]
10. Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods - metal dissolution, oxide formation and oxygen evolution. Rabe M; Toparli C; Chen YH; Kasian O; Mayrhofer KJJ; Erbe A Phys Chem Chem Phys; 2019 May; 21(20):10457-10469. PubMed ID: 31070222 [TBL] [Abstract][Full Text] [Related]
11. On the Operando Structure of Ruthenium Oxides during the Oxygen Evolution Reaction in Acidic Media. Deka N; Jones TE; Falling LJ; Sandoval-Diaz LE; Lunkenbein T; Velasco-Velez JJ; Chan TS; Chuang CH; Knop-Gericke A; Mom RV ACS Catal; 2023 Jun; 13(11):7488-7498. PubMed ID: 37288096 [TBL] [Abstract][Full Text] [Related]
12. Tuning Dynamically Formed Active Phases and Catalytic Mechanisms of Chala SA; Tsai MC; Olbasa BW; Lakshmanan K; Huang WH; Su WN; Liao YF; Lee JF; Dai H; Hwang BJ ACS Nano; 2021 Sep; 15(9):14996-15006. PubMed ID: 34515484 [TBL] [Abstract][Full Text] [Related]
13. Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Lee WH; Han MH; Ko YJ; Min BK; Chae KH; Oh HS Nat Commun; 2022 Feb; 13(1):605. PubMed ID: 35105874 [TBL] [Abstract][Full Text] [Related]
14. Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction. Etxebarria A; Lopez Luna M; Martini A; Hejral U; Rüscher M; Zhan C; Herzog A; Jamshaid A; Kordus D; Bergmann A; Kuhlenbeck H; Roldan Cuenya B ACS Catal; 2024 Sep; 14(18):14219-14232. PubMed ID: 39324051 [TBL] [Abstract][Full Text] [Related]
15. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Fabbri E; Nachtegaal M; Binninger T; Cheng X; Kim BJ; Durst J; Bozza F; Graule T; Schäublin R; Wiles L; Pertoso M; Danilovic N; Ayers KE; Schmidt TJ Nat Mater; 2017 Sep; 16(9):925-931. PubMed ID: 28714982 [TBL] [Abstract][Full Text] [Related]
17. Innovative Insights into Water-Oxidation Mechanism: Investigating Birnessite's Reaction with Cerium(IV) Ammonium Nitrate. Mohammadi MR; Aleshkevych P; Mousazade Y; Tasbihi M; Dau H; Najafpour MM Inorg Chem; 2024 Jul; 63(26):12200-12206. PubMed ID: 38904100 [TBL] [Abstract][Full Text] [Related]
18. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Wang J; Gao Y; Kong H; Kim J; Choi S; Ciucci F; Hao Y; Yang S; Shao Z; Lim J Chem Soc Rev; 2020 Dec; 49(24):9154-9196. PubMed ID: 33140778 [TBL] [Abstract][Full Text] [Related]
19. Operando X-ray Absorption Spectroscopy as a Powerful Tool for Uncovering Property-Activity Relationships for Oxygen Evolution Transition Metal Oxide Catalysts. Fabbri E; Schmidt TJ Chimia (Aarau); 2024 May; 78(5):320-325. PubMed ID: 38822775 [TBL] [Abstract][Full Text] [Related]
20. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Zhai P; Wang C; Zhao Y; Zhang Y; Gao J; Sun L; Hou J Nat Commun; 2023 Apr; 14(1):1873. PubMed ID: 37015944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]