These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37585267)

  • 1. An optical sensor for the sensitive determination of formaldehyde gas based on chromotropic acid and 4-aminoazobenzene immobilized in a hydrophilic membrane.
    Fernández-Ramos MD; Moraga-Cabezas A; Medina-Castillo AL; Capitán-Vallvey LF
    Analyst; 2023 Sep; 148(18):4533-4538. PubMed ID: 37585267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric determination of formaldehyde in air using a hanging drop of chromotropic acid.
    Pretto A; Milani MR; Cardoso AA
    J Environ Monit; 2000 Dec; 2(6):566-70. PubMed ID: 11296742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: An optical sensor for the sensitive determination of formaldehyde gas based on chromotropic acid and 4-aminoazobenzene immobilized in a hydrophilic membrane.
    Fernández-Ramos MD; Moraga-Cabezas A; Medina-Castillo AL; Capitán-Vallvey LF
    Analyst; 2024 Apr; 149(8):2480. PubMed ID: 38498079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sol-gel based sensor for selective formaldehyde determination.
    Bunkoed O; Davis F; Kanatharana P; Thavarungkul P; Higson SP
    Anal Chim Acta; 2010 Feb; 659(1-2):251-7. PubMed ID: 20103132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new enzymo-chemical method for simultaneous assay of methanol and formaldehyde.
    Gonchar MV; Grabek D; Oklejewich B; Pavlishko HM; Shamlian OV; Sybirny VA; Kotylak Z; Rudke K; Csöregi E; Sibirny AA
    Ukr Biokhim Zh (1999); 2005; 77(3):146-54. PubMed ID: 16566143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field precision of formaldehyde sampling and analysis using NIOSH method 3500.
    Akbar-Khanzadeh F; Park CK
    Am Ind Hyg Assoc J; 1997 Sep; 58(9):657-60. PubMed ID: 9291564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple and highly sensitive colorimetric detection method for gaseous formaldehyde.
    Feng L; Musto CJ; Suslick KS
    J Am Chem Soc; 2010 Mar; 132(12):4046-7. PubMed ID: 20218682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity.
    Guo XL; Chen Y; Jiang HL; Qiu XB; Yu DL
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30231467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determination of unbound formaldehyde in protein coverings using the colorimetric method with chromotropic acid].
    Lewandowska I; Jurkiewicz M
    Rocz Panstw Zakl Hig; 1993; 44(2-3):175-9. PubMed ID: 8016540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable sick house syndrome gas monitoring system based on novel colorimetric reagents for the highly selective and sensitive detection of formaldehyde.
    Suzuki Y; Nakano N; Suzuki K
    Environ Sci Technol; 2003 Dec; 37(24):5695-700. PubMed ID: 14717182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry.
    Wongniramaikul W; Limsakul W; Choodum A
    Food Chem; 2018 May; 249():154-161. PubMed ID: 29407918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Rapid and Sensitive Formaldehyde Detection at Room Temperature Using a ZIF-8/MWCNT Nanocomposite.
    Jafari N; Zeinali S
    ACS Omega; 2020 Mar; 5(9):4395-4402. PubMed ID: 32175487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly detecting the carcinogen acetaldehyde: preparation and application of a flower-like MoS
    Wang H; Shao Z; Shi X; Tang Z; Sun B
    Anal Methods; 2023 Nov; 15(42):5620-5629. PubMed ID: 37855720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric Visualization Using Polymeric Core-Shell Nanoparticles: Enhanced Sensitivity for Formaldehyde Gas Sensors.
    Park JJ; Kim Y; Lee C; Kook JW; Kim D; Kim JH; Hwang KS; Lee JY
    Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32344883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone.
    Sekine Y; Katori R; Tsuda Y; Kitahara T
    Environ Technol; 2016; 37(13):1647-55. PubMed ID: 26616679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new cataluminescence gas sensor based on SiO2 nanotubes fabricated using carbon nanotube templates.
    Wang Y; Cao X; Li J; Chen N
    Talanta; 2011 May; 84(3):977-82. PubMed ID: 21482312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation of taurolidine decomposition in polymer solutions by chromotropic acid formaldehyde assay method.
    Sihn YS; Guillory JK; Kirsch LE
    J Pharm Biomed Anal; 1997 Dec; 16(4):643-50. PubMed ID: 9502160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an optical formaldehyde sensor based on the use of immobilized pararosaniline.
    Baker ME; Narayanaswamy R
    Analyst; 1994 May; 119(5):959-61. PubMed ID: 8067539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive emission colorimetric sensor (PECS) for measuring emission rates of formaldehyde based on an enzymatic reaction and reflectance photometry.
    Shinohara N; Kajiwara T; Ohnishi M; Kodama K; Yanagisawa Y
    Environ Sci Technol; 2008 Jun; 42(12):4472-7. PubMed ID: 18605573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The measuring and monitoring of formaldehyde in inhalation test atmospheres.
    Meadows GW; Rusch GM
    Am Ind Hyg Assoc J; 1983 Feb; 44(2):71-7. PubMed ID: 6837443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.