These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37585524)

  • 1. A flexible omnidirectional rotating magnetic array for MRI-safe transdermal wireless energy harvesting through flexible electronics.
    Zhou M; Mao S; Wu Z; Li Y; Yang Z; Liu X; Ling W; Li J; Cui B; Guo Y; Guo R; Huo W; Huang X
    Sci Adv; 2023 Aug; 9(33):eadi5451. PubMed ID: 37585524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator.
    Jiang L; Yang Y; Chen R; Lu G; Li R; Li D; Humayun MS; Shung KK; Zhu J; Chen Y; Zhou Q
    Nano Energy; 2019 Feb; 56():216-224. PubMed ID: 31475091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film.
    Xu Z; Jin C; Cabe A; Escobedo D; Gruslova A; Jenney S; Closson AB; Dong L; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2021 Apr; 10(8):e2002100. PubMed ID: 33434407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimally invasive power sources for implantable electronics.
    Xu M; Liu Y; Yang K; Li S; Wang M; Wang J; Yang D; Shkunov M; Silva SRP; Castro FA; Zhao Y
    Exploration (Beijing); 2024 Feb; 4(1):20220106. PubMed ID: 38854488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic characteristics of implantable flexible pressure sensor for wireless readout using MRI.
    Nakamura T; Inoue Y; Kim D; Matsuhisa N; Yokota T; Sekitani T; Someya T; Sekino M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2338-41. PubMed ID: 25570457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants.
    Alrashdan FT; Chen JC; Singer A; Avants BW; Yang K; Robinson JT
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229314
    [No Abstract]   [Full Text] [Related]  

  • 7. Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics.
    Huang X; Wang L; Wang H; Zhang B; Wang X; Stening RYZ; Sheng X; Yin L
    Small; 2020 Apr; 16(15):e1902827. PubMed ID: 31513333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring.
    Yu J; Ling W; Li Y; Ma N; Wu Z; Liang R; Pan H; Liu W; Fu B; Wang K; Li C; Wang H; Peng H; Ning B; Yang J; Huang X
    Small; 2021 Jan; 17(4):e2005925. PubMed ID: 33372299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Fully Integrated Inductive Coupling System: A Discrete Approach Towards Sensing Ventricular Pressure.
    Hernández Sebastián N; Villa Villaseñor N; Renero-Carrillo FJ; Díaz Alonso D; Calleja Arriaga W
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Batteryless, Miniaturized Implantable Glucose Sensor Using a Fluorescent Hydrogel.
    Lee H; Lee J; Park H; Nam MS; Heo YJ; Kim S
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.
    Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication.
    Jiang L; Wu B; Wei X; Lv X; Xue H; Lu G; Zeng Y; Xing J; Wu W; Wu J
    Mater Horiz; 2022 Aug; 9(8):2180-2190. PubMed ID: 35686946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless Power Transfer and Telemetry for Implantable Bioelectronics.
    Yoo S; Lee J; Joo H; Sunwoo SH; Kim S; Kim DH
    Adv Healthc Mater; 2021 Sep; 10(17):e2100614. PubMed ID: 34075721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices.
    Dinis H; Mendes PM
    Biosens Bioelectron; 2021 Jan; 172():112781. PubMed ID: 33160236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bootstrapped Comparator-Switched Active Rectifying Circuit for Wirelessly Powered Integrated Miniaturized Energy Sensing Systems.
    Gong CA; Li SW; Shiue MT
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless, Battery-Free, and Fully Implantable Micro-Coil System for 7 T Brain MRI.
    Ullah S; Zada M; Basir A; Yoo H
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):430-441. PubMed ID: 35657838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wireless batteryless deep-seated implantable ultrasonic pulser-receiver powered by magnetic coupling.
    Tang SC; Jolesz FA; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1211-21. PubMed ID: 21693403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully Implantable Low-Power High Frequency Range Optoelectronic Devices for Dual-Channel Modulation in the Brain.
    Kim WS; Jeong M; Hong S; Lim B; Park SI
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices.
    Song SH; Kim A; Ziaie B
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2717-23. PubMed ID: 26080376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.