These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37585524)

  • 41. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.
    Kim J; Imani S; de Araujo WR; Warchall J; Valdés-Ramírez G; Paixão TR; Mercier PP; Wang J
    Biosens Bioelectron; 2015 Dec; 74():1061-8. PubMed ID: 26276541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of magnetic resonance imaging on implantable permanent magnets.
    Schneider ML; Walker GB; Dormer KJ
    Am J Otol; 1995 Sep; 16(5):687-9. PubMed ID: 8588678
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.
    Khan Y; Ostfeld AE; Lochner CM; Pierre A; Arias AC
    Adv Mater; 2016 Jun; 28(22):4373-95. PubMed ID: 26867696
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetic resonance imaging safety in patients with cardiac implantable electronic devices.
    Yang E; Suzuki M; Nazarian S; Halperin HR
    Trends Cardiovasc Med; 2022 Oct; 32(7):440-447. PubMed ID: 34384880
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wireless Power Transmission for Implantable Medical Devices Using Focused Ultrasound and a Miniaturized 1-3 Piezoelectric Composite Receiving Transducer.
    Yi X; Zheng W; Cao H; Wang S; Feng X; Yang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3592-3598. PubMed ID: 34357865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A New Frontier of Printed Electronics: Flexible Hybrid Electronics.
    Khan Y; Thielens A; Muin S; Ting J; Baumbauer C; Arias AC
    Adv Mater; 2020 Apr; 32(15):e1905279. PubMed ID: 31742812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flexible-Device Injector with a Microflap Array for Subcutaneously Implanting Flexible Medical Electronics.
    Song K; Kim J; Cho S; Kim N; Jung D; Choo H; Lee J
    Adv Healthc Mater; 2018 Aug; 7(15):e1800419. PubMed ID: 29938924
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment.
    Lim HR; Kim HS; Qazi R; Kwon YT; Jeong JW; Yeo WH
    Adv Mater; 2020 Apr; 32(15):e1901924. PubMed ID: 31282063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A wireless magnetic resonance energy transfer system for micro implantable medical sensors.
    Li X; Zhang H; Peng F; Li Y; Yang T; Wang B; Fang D
    Sensors (Basel); 2012; 12(8):10292-308. PubMed ID: 23112600
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.
    Dagdeviren C; Li Z; Wang ZL
    Annu Rev Biomed Eng; 2017 Jun; 19():85-108. PubMed ID: 28633564
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review.
    Latif R; Noor MM; Yunas J; Hamzah AA
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic resonance imaging compatibility and safety of the SOUNDTEC Direct System.
    Dyer RK; Nakmali D; Dormer KJ
    Laryngoscope; 2006 Aug; 116(8):1321-33. PubMed ID: 16885731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radio-frequency energy harvesting for wearable sensors.
    Borges LM; Chávez-Santiago R; Barroca N; Velez FJ; Balasingham I
    Healthc Technol Lett; 2015 Feb; 2(1):22-7. PubMed ID: 26609400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks.
    Shao Y; Wei L; Wu X; Jiang C; Yao Y; Peng B; Chen H; Huangfu J; Ying Y; Zhang CJ; Ping J
    Nat Commun; 2022 Jun; 13(1):3223. PubMed ID: 35680851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Temperature-Annealed Flexible Carbon Nanotube Network Transistors for High-Frequency Wearable Wireless Electronics.
    Lan Y; Yang Y; Wang Y; Wu Y; Cao Z; Huo S; Jiang L; Guo Y; Wu Y; Yan B; Xu R; Chen Y; Li Y; Lal S; Ma Z; Xu Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26145-26152. PubMed ID: 32410452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Compact and Efficient Boost Converter in a 28 nm CMOS with 90 mV Self-Startup and Maximum Output Voltage Tracking ZCS for Thermoelectric Energy Harvesting.
    Ali M; Chandrarathna SC; Moon SY; Jana MS; Shafique A; Qraiqea H; Lee JW
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448092
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants.
    Beker L; Benet A; Meybodi AT; Eovino B; Pisano AP; Lin L
    Biomed Microdevices; 2017 Jun; 19(2):32. PubMed ID: 28425028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
    Lou Z; Li L; Wang L; Shen G
    Small; 2017 Dec; 13(45):. PubMed ID: 29076297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Linear-Power-Regulated Wireless Power Transfer Method for Decreasing the Heat Dissipation of Fully Implantable Microsystems.
    Wang H; Zhu C; Jin W; Tang J; Wu Z; Chen K; Hong H
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.