These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37585539)

  • 1. Southern Alaska as a source of atmospheric mineral dust and ice-nucleating particles.
    Barr SL; Wyld B; McQuaid JB; Neely Iii RR; Murray BJ
    Sci Adv; 2023 Aug; 9(33):eadg3708. PubMed ID: 37585539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iceland is an episodic source of atmospheric ice-nucleating particles relevant for mixed-phase clouds.
    Sanchez-Marroquin A; Arnalds O; Baustian-Dorsi KJ; Browse J; Dagsson-Waldhauserova P; Harrison AD; Maters EC; Pringle KJ; Vergara-Temprado J; Burke IT; McQuaid JB; Carslaw KS; Murray BJ
    Sci Adv; 2020 Jun; 6(26):eaba8137. PubMed ID: 32637618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineral and biological ice-nucleating particles above the South East of the British Isles.
    Sanchez-Marroquin A; West JS; Burke IT; McQuaid JB; Murray BJ
    Environ Sci Atmos; 2021 May; 1(4):176-191. PubMed ID: 34278306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass combustion produces ice-active minerals in biomass-burning aerosol and bottom ash.
    Jahn LG; Polen MJ; Jahl LG; Brubaker TA; Somers J; Sullivan RC
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21928-21937. PubMed ID: 32839314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of biogenic material to the atmospheric ice-nucleating particle population in North Western Europe.
    O'Sullivan D; Adams MP; Tarn MD; Harrison AD; Vergara-Temprado J; Porter GCE; Holden MA; Sanchez-Marroquin A; Carotenuto F; Whale TF; McQuaid JB; Walshaw R; Hedges DHP; Burke IT; Cui Z; Murray BJ
    Sci Rep; 2018 Sep; 8(1):13821. PubMed ID: 30217983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Active Ice-Nucleating Particles at the Summer North Pole.
    Porter GCE; Adams MP; Brooks IM; Ickes L; Karlsson L; Leck C; Salter ME; Schmale J; Siegel K; Sikora SNF; Tarn MD; Vüllers J; Wernli H; Zieger P; Zinke J; Murray BJ
    J Geophys Res Atmos; 2022 Mar; 127(6):e2021JD036059. PubMed ID: 35865411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The study of atmospheric ice-nucleating particles via microfluidically generated droplets.
    Tarn MD; Sikora SNF; Porter GCE; O'Sullivan D; Adams M; Whale TF; Harrison AD; Vergara-Temprado J; Wilson TW; Shim JU; Murray BJ
    Microfluid Nanofluidics; 2018; 22(5):52. PubMed ID: 29720926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spaceborne Evidence That Ice-Nucleating Particles Influence High-Latitude Cloud Phase.
    Carlsen T; David RO
    Geophys Res Lett; 2022 Jul; 49(14):e2022GL098041. PubMed ID: 36249281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence and Potential Atmospheric Ramifications of Ice-Nucleating Particles Released from Thawing Permafrost.
    Barry KR; Hill TCJ; Moore KA; Douglas TA; Kreidenweis SM; DeMott PJ; Creamean JM
    Environ Sci Technol; 2023 Mar; 57(9):3505-3515. PubMed ID: 36811552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of biological ice nucleating particles in the atmosphere.
    Huang S; Hu W; Chen J; Wu Z; Zhang D; Fu P
    Environ Int; 2021 Jan; 146():106197. PubMed ID: 33271442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles.
    Vergara-Temprado J; Miltenberger AK; Furtado K; Grosvenor DP; Shipway BJ; Hill AA; Wilkinson JM; Field PR; Murray BJ; Carslaw KS
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2687-2692. PubMed ID: 29490918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of atmospheric ice nucleating particles over East Antarctica retrieved from the surface snow.
    Xu JZ; Yang J; Du ZH; Chen J; Wu ZJ; Xiao CD
    Sci Total Environ; 2023 Aug; 888():164181. PubMed ID: 37201849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observational evidence for the non-suppression effect of atmospheric chemical modification on the ice nucleation activity of East Asian dust.
    Chen J; Wu Z; Meng X; Zhang C; Chen J; Qiu Y; Chen L; Fang X; Wang Y; Zhang Y; Chen S; Gao J; Li W; Hu M
    Sci Total Environ; 2023 Feb; 861():160708. PubMed ID: 36481160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sea spray aerosol as a unique source of ice nucleating particles.
    DeMott PJ; Hill TC; McCluskey CS; Prather KA; Collins DB; Sullivan RC; Ruppel MJ; Mason RH; Irish VE; Lee T; Hwang CY; Rhee TS; Snider JR; McMeeking GR; Dhaniyala S; Lewis ER; Wentzell JJ; Abbatt J; Lee C; Sultana CM; Ault AP; Axson JL; Diaz Martinez M; Venero I; Santos-Figueroa G; Stokes MD; Deane GB; Mayol-Bracero OL; Grassian VH; Bertram TH; Bertram AK; Moffett BF; Franc GD
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5797-803. PubMed ID: 26699469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological Ice-Nucleating Particles Deposited Year-Round in Subtropical Precipitation.
    Joyce RE; Lavender H; Farrar J; Werth JT; Weber CF; D'Andrilli J; Vaitilingom M; Christner BC
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31562166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A marine biogenic source of atmospheric ice-nucleating particles.
    Wilson TW; Ladino LA; Alpert PA; Breckels MN; Brooks IM; Browse J; Burrows SM; Carslaw KS; Huffman JA; Judd C; Kilthau WP; Mason RH; McFiggans G; Miller LA; Nájera JJ; Polishchuk E; Rae S; Schiller CL; Si M; Temprado JV; Whale TF; Wong JP; Wurl O; Yakobi-Hancock JD; Abbatt JP; Aller JY; Bertram AK; Knopf DA; Murray BJ
    Nature; 2015 Sep; 525(7568):234-8. PubMed ID: 26354482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of black carbon to global ice nucleating particle concentrations relevant to mixed-phase clouds.
    Schill GP; DeMott PJ; Emerson EW; Rauker AMC; Kodros JK; Suski KJ; Hill TCJ; Levin EJT; Pierce JR; Farmer DK; Kreidenweis SM
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22705-22711. PubMed ID: 32839319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric aging enhances the ice nucleation ability of biomass-burning aerosol.
    Jahl LG; Brubaker TA; Polen MJ; Jahn LG; Cain KP; Bowers BB; Fahy WD; Graves S; Sullivan RC
    Sci Adv; 2021 Feb; 7(9):. PubMed ID: 33627419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds.
    Atkinson JD; Murray BJ; Woodhouse MT; Whale TF; Baustian KJ; Carslaw KS; Dobbie S; O'Sullivan D; Malkin TL
    Nature; 2013 Jun; 498(7454):355-8. PubMed ID: 23760484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaerosols are the dominant source of warm-temperature immersion-mode INPs and drive uncertainties in INP predictability.
    Cornwell GC; McCluskey CS; Hill TCJ; Levin ET; Rothfuss NE; Tai SL; Petters MD; DeMott PJ; Kreidenweis S; Prather KA; Burrows SM
    Sci Adv; 2023 Sep; 9(37):eadg3715. PubMed ID: 37713488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.