These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37585615)

  • 61. A Swarm Optimization Solver Based on Ferroelectric Spiking Neural Networks.
    Fang Y; Wang Z; Gomez J; Datta S; Khan AI; Raychowdhury A
    Front Neurosci; 2019; 13():855. PubMed ID: 31456659
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Overview of Spiking Neural Network Learning Approaches and Their Computational Complexities.
    Pietrzak P; Szczęsny S; Huderek D; Przyborowski Ł
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991750
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Towards the Simulation of a Realistic Large-Scale Spiking Network on a Desktop Multi-GPU System.
    Torti E; Florimbi G; Dorici A; Danese G; Leporati F
    Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290510
    [TBL] [Abstract][Full Text] [Related]  

  • 64. ANNarchy: a code generation approach to neural simulations on parallel hardware.
    Vitay J; Dinkelbach HÜ; Hamker FH
    Front Neuroinform; 2015; 9():19. PubMed ID: 26283957
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Progressive Tandem Learning for Pattern Recognition With Deep Spiking Neural Networks.
    Wu J; Xu C; Han X; Zhou D; Zhang M; Li H; Tan KC
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7824-7840. PubMed ID: 34546918
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Deep Learning of Explainable EEG Patterns as Dynamic Spatiotemporal Clusters and Rules in a Brain-Inspired Spiking Neural Network.
    Doborjeh M; Doborjeh Z; Kasabov N; Barati M; Wang GY
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300640
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biologically Inspired SNN for Robot Control.
    Nichols E; McDaid LJ; Siddique N
    IEEE Trans Cybern; 2013 Feb; 43(1):115-28. PubMed ID: 22736650
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spike-timing-dependent construction.
    Lightheart T; Grainger S; Lu TF
    Neural Comput; 2013 Oct; 25(10):2611-45. PubMed ID: 23895051
    [TBL] [Abstract][Full Text] [Related]  

  • 69. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
    Cheung K; Schultz SR; Luk W
    Front Neurosci; 2015; 9():516. PubMed ID: 26834542
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A regularization perspective based theoretical analysis for adversarial robustness of deep spiking neural networks.
    Zhang H; Cheng J; Zhang J; Liu H; Wei Z
    Neural Netw; 2023 Aug; 165():164-174. PubMed ID: 37295205
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison of a spiking neural network and an MLP for robust identification of generator dynamics in a multimachine power system.
    Johnson C; Venayagamoorthy GK; Mitra P
    Neural Netw; 2009; 22(5-6):833-41. PubMed ID: 19616408
    [TBL] [Abstract][Full Text] [Related]  

  • 72. BackEISNN: A deep spiking neural network with adaptive self-feedback and balanced excitatory-inhibitory neurons.
    Zhao D; Zeng Y; Li Y
    Neural Netw; 2022 Oct; 154():68-77. PubMed ID: 35863201
    [TBL] [Abstract][Full Text] [Related]  

  • 73. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network.
    Wu D; Yi X; Huang X
    Front Neurosci; 2022; 16():759900. PubMed ID: 35692427
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Communication Sparsity in Distributed Spiking Neural Network Simulations to Improve Scalability.
    Fernandez-Musoles C; Coca D; Richmond P
    Front Neuroinform; 2019; 13():19. PubMed ID: 31001102
    [TBL] [Abstract][Full Text] [Related]  

  • 76. BSNN: Towards faster and better conversion of artificial neural networks to spiking neural networks with bistable neurons.
    Li Y; Zhao D; Zeng Y
    Front Neurosci; 2022; 16():991851. PubMed ID: 36312025
    [TBL] [Abstract][Full Text] [Related]  

  • 77. HRLSim: a high performance spiking neural network simulator for GPGPU clusters.
    Minkovich K; Thibeault CM; O'Brien MJ; Nogin A; Cho Y; Srinivasa N
    IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):316-31. PubMed ID: 24807031
    [TBL] [Abstract][Full Text] [Related]  

  • 78. FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency.
    Susi G; Garcés P; Paracone E; Cristini A; Salerno M; Maestú F; Pereda E
    Sci Rep; 2021 Jun; 11(1):12160. PubMed ID: 34108523
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Heterogeneous recurrent spiking neural network for spatio-temporal classification.
    Chakraborty B; Mukhopadhyay S
    Front Neurosci; 2023; 17():994517. PubMed ID: 36793542
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Unsupervised AER Object Recognition Based on Multiscale Spatio-Temporal Features and Spiking Neurons.
    Liu Q; Pan G; Ruan H; Xing D; Xu Q; Tang H
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5300-5311. PubMed ID: 32054587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.