BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37586054)

  • 1. Galectin-3 Mediates Vascular Dysfunction in Obesity by Regulating NADPH Oxidase 1.
    Padgett CA; Bátori RK; Speese AC; Rosewater CL; Bush WB; Derella CC; Haigh SB; Sellers HG; Corley ZL; West MA; Mintz JD; Ange BB; Harris RA; Brands MW; Fulton DJR; Stepp DW
    Arterioscler Thromb Vasc Biol; 2023 Oct; 43(10):e381-e395. PubMed ID: 37586054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galectin-3 Mediates Vascular Dysfunction in Obesity by Regulating NADPH Oxidase 1.
    Padgett CA; Bátori RK; Speese AC; Rosewater CL; Bush WB; Derella CC; Haigh SB; Sellers HG; Corley ZL; West MA; Mintz JD; Ange BB; Harris RA; Brands MW; Fulton DJR; Stepp DW
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH oxidase 1 promotes hepatic steatosis in obese mice and is abrogated by augmented skeletal muscle mass.
    Larion S; Padgett CA; Mintz JD; Thompson JA; Butcher JT; Belin de Chantemèle EJ; Haigh S; Khurana S; Fulton DJ; Stepp DW
    Am J Physiol Gastrointest Liver Physiol; 2024 Mar; 326(3):G264-G273. PubMed ID: 38258487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Deletion of NADPH Oxidase 1 Rescues Microvascular Function in Mice With Metabolic Disease.
    Thompson JA; Larion S; Mintz JD; Belin de Chantemèle EJ; Fulton DJ; Stepp DW
    Circ Res; 2017 Aug; 121(5):502-511. PubMed ID: 28684629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity.
    Muñoz M; López-Oliva ME; Rodríguez C; Martínez MP; Sáenz-Medina J; Sánchez A; Climent B; Benedito S; García-Sacristán A; Rivera L; Hernández M; Prieto D
    Redox Biol; 2020 Jan; 28():101330. PubMed ID: 31563085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice.
    Steven S; Dib M; Hausding M; Kashani F; Oelze M; Kröller-Schön S; Hanf A; Daub S; Roohani S; Gramlich Y; Lutgens E; Schulz E; Becker C; Lackner KJ; Kleinert H; Knosalla C; Niesler B; Wild PS; Münzel T; Daiber A
    Cardiovasc Res; 2018 Feb; 114(2):312-323. PubMed ID: 29036612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing muscle mass improves vascular function in obese (db/db) mice.
    Qiu S; Mintz JD; Salet CD; Han W; Giannis A; Chen F; Yu Y; Su Y; Fulton DJ; Stepp DW
    J Am Heart Assoc; 2014 Jun; 3(3):e000854. PubMed ID: 24965025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans Is Mediated by NADPH Oxidase: Influence of Exercise Training.
    La Favor JD; Dubis GS; Yan H; White JD; Nelson MA; Anderson EJ; Hickner RC
    Arterioscler Thromb Vasc Biol; 2016 Dec; 36(12):2412-2420. PubMed ID: 27765769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toll-Like Receptor 2 (TLR2) Knockout Abrogates Diabetic and Obese Phenotypes While Restoring Endothelial Function via Inhibition of NOX1.
    Guo Z; Zhang Y; Liu C; Youn JY; Cai H
    Diabetes; 2021 Sep; 70(9):2107-2119. PubMed ID: 34127487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caloric restriction reverses high-fat diet-induced endothelial dysfunction and vascular superoxide production in C57Bl/6 mice.
    Ketonen J; Pilvi T; Mervaala E
    Heart Vessels; 2010 May; 25(3):254-62. PubMed ID: 20512454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of protein tyrosine phosphatase 1b improves peripheral insulin resistance and vascular function in obese, leptin-resistant mice via reduced oxidant tone.
    Ali MI; Ketsawatsomkron P; Belin de Chantemele EJ; Mintz JD; Muta K; Salet C; Black SM; Tremblay ML; Fulton DJ; Marrero MB; Stepp DW
    Circ Res; 2009 Nov; 105(10):1013-22. PubMed ID: 19797171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic extracellular signal-regulated kinase 2 suppresses endoplasmic reticulum stress and protects from oxidative stress and endothelial dysfunction.
    Kujiraoka T; Satoh Y; Ayaori M; Shiraishi Y; Arai-Nakaya Y; Hakuno D; Yada H; Kuwada N; Endo S; Isoda K; Adachi T
    J Am Heart Assoc; 2013 Aug; 2(4):e000361. PubMed ID: 23954796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV Protease Inhibitor Ritonavir Impairs Endothelial Function Via Reduction in Adipose Mass and Endothelial Leptin Receptor-Dependent Increases in NADPH Oxidase 1 (Nox1), C-C Chemokine Receptor Type 5 (CCR5), and Inflammation.
    Bruder-Nascimento T; Kress TC; Kennard S; Belin de Chantemèle EJ
    J Am Heart Assoc; 2020 Oct; 9(19):e018074. PubMed ID: 33003981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress.
    Yang K; Velagapudi S; Akhmedov A; Kraler S; Lapikova-Bryhinska T; Schmiady MO; Wu X; Geng L; Camici GG; Xu A; Lüscher TF
    Cardiovasc Res; 2023 Oct; 119(12):2190-2201. PubMed ID: 37401647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoprotegerin regulates vascular function through syndecan-1 and NADPH oxidase-derived reactive oxygen species.
    Alves-Lopes R; Neves KB; Strembitska A; Harvey AP; Harvey KY; Yusuf H; Haniford S; Hepburn RT; Dyet J; Beattie W; Haddow L; McAbney J; Graham D; Montezano AC
    Clin Sci (Lond); 2021 Oct; 135(20):2429-2444. PubMed ID: 34668009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes.
    Wang S; Zhang M; Liang B; Xu J; Xie Z; Liu C; Viollet B; Yan D; Zou MH
    Circ Res; 2010 Apr; 106(6):1117-28. PubMed ID: 20167927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.
    Serpillon S; Floyd BC; Gupte RS; George S; Kozicky M; Neito V; Recchia F; Stanley W; Wolin MS; Gupte SA
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance.
    Li P; Liu S; Lu M; Bandyopadhyay G; Oh D; Imamura T; Johnson AMF; Sears D; Shen Z; Cui B; Kong L; Hou S; Liang X; Iovino S; Watkins SM; Ying W; Osborn O; Wollam J; Brenner M; Olefsky JM
    Cell; 2016 Nov; 167(4):973-984.e12. PubMed ID: 27814523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition.
    Wind S; Beuerlein K; Armitage ME; Taye A; Kumar AH; Janowitz D; Neff C; Shah AM; Wingler K; Schmidt HH
    Hypertension; 2010 Sep; 56(3):490-7. PubMed ID: 20606112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.
    Du J; Fan LM; Mai A; Li JM
    Br J Pharmacol; 2013 Nov; 170(5):1064-77. PubMed ID: 23957783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.