These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37586096)

  • 1. In Situ Raman Mapping of Si Island Electrodes and Stress Modeling as a Function of Lithiation and Size.
    Wang H; Song Y; Ferrari VC; Kim NS; Lee SB; Albertus P; Rubloff G; Stewart DM
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40409-40418. PubMed ID: 37586096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-Raman Stress Characterization of Crystalline Si as a Function of the Lithiation State.
    Wang H; Kim NS; Song Y; Albertus P; Lee SB; Rubloff G; Stewart D
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10752-10760. PubMed ID: 36795856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental measurement of electro-chemo-mechanical properties of a composite silicon electrode in lithium ion batteries.
    Li D; Wan H; Liu H; Wang Y; Zhang J
    Phys Chem Chem Phys; 2022 Oct; 24(41):25580-25587. PubMed ID: 36254690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study.
    Johari P; Qi Y; Shenoy VB
    Nano Lett; 2011 Dec; 11(12):5494-500. PubMed ID: 22077884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation.
    Kim SY; Ostadhossein A; van Duin AC; Xiao X; Gao H; Qi Y
    Phys Chem Chem Phys; 2016 Feb; 18(5):3706-15. PubMed ID: 26760786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ TEM of two-phase lithiation of amorphous silicon nanospheres.
    McDowell MT; Lee SW; Harris JT; Korgel BA; Wang C; Nix WD; Cui Y
    Nano Lett; 2013 Feb; 13(2):758-64. PubMed ID: 23323680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operando Raman Spectroscopy and Synchrotron X-ray Diffraction of Lithiation/Delithiation in Silicon Nanoparticle Anodes.
    Tardif S; Pavlenko E; Quazuguel L; Boniface M; Maréchal M; Micha JS; Gonon L; Mareau V; Gebel G; Bayle-Guillemaud P; Rieutord F; Lyonnard S
    ACS Nano; 2017 Nov; 11(11):11306-11316. PubMed ID: 29111665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithiation-induced fracture of silicon nanowires observed by in-situ scanning electron microscopy.
    Wei CY; Sun YT; Liu YL; Liu TR; Wen CY
    Nanotechnology; 2020 Sep; 31(36):364001. PubMed ID: 32438349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods.
    Ghassemi H; Au M; Chen N; Heiden PA; Yassar RS
    ACS Nano; 2011 Oct; 5(10):7805-11. PubMed ID: 21902219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon.
    Chon MJ; Sethuraman VA; McCormick A; Srinivasan V; Guduru PR
    Phys Rev Lett; 2011 Jul; 107(4):045503. PubMed ID: 21867019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity.
    Cao C; Steinrück HG; Shyam B; Stone KH; Toney MF
    Nano Lett; 2016 Dec; 16(12):7394-7401. PubMed ID: 27783514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Li segregation induces structure and strength changes at the amorphous Si/Cu interface.
    Stournara ME; Xiao X; Qi Y; Johari P; Lu P; Sheldon BW; Gao H; Shenoy VB
    Nano Lett; 2013 Oct; 13(10):4759-68. PubMed ID: 24000887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycling-induced structural damage/degradation of electrode materials-microscopic viewpoint.
    Yang F
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34731848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Lithium Insertion Mechanisms of a Thin-Film Si Electrode by Coupling Time-of-Flight Secondary-Ion Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Focused-Ion-Beam/SEM.
    Bordes A; De Vito E; Haon C; Secouard C; Montani A; Marcus P
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27853-62. PubMed ID: 26618212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Changes during the Conversion Reaction of Tungsten Oxide Electrodes with Tailored, Mesoscale Porosity.
    Kim JJ; Zhou C; Mane AU; Suh HS; Kim S; Shi B; Fenter P; Elam JW; Nealey PF; Lee B; Fister TT
    ACS Nano; 2022 Apr; 16(4):5384-5392. PubMed ID: 35357130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.