BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37586362)

  • 1. Archival single-cell genomics reveals persistent subclones during DCIS progression.
    Wang K; Kumar T; Wang J; Minussi DC; Sei E; Li J; Tran TM; Thennavan A; Hu M; Casasent AK; Xiao Z; Bai S; Yang L; King LM; Shah V; Kristel P; van der Borden CL; Marks JR; Zhao Y; Zurita AJ; Aparicio A; Chapin B; Ye J; Zhang J; Gibbons DL; ; Sawyer E; Thompson AM; Futreal A; Hwang ES; Wesseling J; Lips EH; Navin NE
    Cell; 2023 Aug; 186(18):3968-3982.e15. PubMed ID: 37586362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progression-specific genes identified in microdissected formalin-fixed and paraffin-embedded tissue containing matched ductal carcinoma in situ and invasive ductal breast cancers.
    Schultz S; Bartsch H; Sotlar K; Petat-Dutter K; Bonin M; Kahlert S; Harbeck N; Vogel U; Seeger H; Fehm T; Neubauer HJ
    BMC Med Genomics; 2018 Sep; 11(1):80. PubMed ID: 30236106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection.
    Hernandez L; Wilkerson PM; Lambros MB; Campion-Flora A; Rodrigues DN; Gauthier A; Cabral C; Pawar V; Mackay A; A'Hern R; Marchiò C; Palacios J; Natrajan R; Weigelt B; Reis-Filho JS
    J Pathol; 2012 May; 227(1):42-52. PubMed ID: 22252965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progression of ductal carcinoma in situ to invasive breast cancer: comparative genomic sequencing.
    Doebar SC; Krol NM; van Marion R; Brouwer RWW; van Ijcken WFJ; Martens JM; Dinjens WNM; van Deurzen CHM
    Virchows Arch; 2019 Feb; 474(2):247-251. PubMed ID: 30284611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling differential microRNA expression between in situ, infiltrative and lympho-vascular space invasive breast cancer: a pilot study.
    Soon PS; Provan PJ; Kim E; Pathmanathan N; Graham D; Clarke CL; Balleine RL
    Clin Exp Metastasis; 2018 Feb; 35(1-2):3-13. PubMed ID: 29214365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omic profiling of simultaneous ductal carcinoma in situ and invasive breast cancer.
    Kaplan HG; Dowdell AK; Berry AB; Shimol RB; Robinson FL; Carney CA; Piening BD
    Breast Cancer Res Treat; 2024 Jun; 205(3):451-464. PubMed ID: 38523186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression.
    Vargas AC; McCart Reed AE; Waddell N; Lane A; Reid LE; Smart CE; Cocciardi S; da Silva L; Song S; Chenevix-Trench G; Simpson PT; Lakhani SR
    Breast Cancer Res Treat; 2012 Aug; 135(1):153-65. PubMed ID: 22718308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of deregulated microRNAs in breast cancer progression using FFPE tissue.
    Chen L; Li Y; Fu Y; Peng J; Mo MH; Stamatakos M; Teal CB; Brem RF; Stojadinovic A; Grinkemeyer M; McCaffrey TA; Man YG; Fu SW
    PLoS One; 2013; 8(1):e54213. PubMed ID: 23372687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma.
    Johnson CE; Gorringe KL; Thompson ER; Opeskin K; Boyle SE; Wang Y; Hill P; Mann GB; Campbell IG
    Breast Cancer Res Treat; 2012 Jun; 133(3):889-98. PubMed ID: 22052326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-Exome Sequencing Analysis of the Progression from Non-Low-Grade Ductal Carcinoma
    Pareja F; Brown DN; Lee JY; Da Cruz Paula A; Selenica P; Bi R; Geyer FC; Gazzo A; da Silva EM; Vahdatinia M; Stylianou AA; Ferrando L; Wen HY; Hicks JB; Weigelt B; Reis-Filho JS
    Clin Cancer Res; 2020 Jul; 26(14):3682-3693. PubMed ID: 32220886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer.
    Lips EH; Kumar T; Megalios A; Visser LL; Sheinman M; Fortunato A; Shah V; Hoogstraat M; Sei E; Mallo D; Roman-Escorza M; Ahmed AA; Xu M; van den Belt-Dusebout AW; Brugman W; Casasent AK; Clements K; Davies HR; Fu L; Grigoriadis A; Hardman TM; King LM; Krete M; Kristel P; de Maaker M; Maley CC; Marks JR; Menegaz BA; Mulder L; Nieboer F; Nowinski S; Pinder S; Quist J; Salinas-Souza C; Schaapveld M; Schmidt MK; Shaaban AM; Shami R; Sridharan M; Zhang J; Stobart H; Collyar D; Nik-Zainal S; Wessels LFA; Hwang ES; Navin NE; Futreal PA; ; Thompson AM; Wesseling J; Sawyer EJ
    Nat Genet; 2022 Jun; 54(6):850-860. PubMed ID: 35681052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of heterozygosity analyses of asynchronous lesions of ductal carcinoma in situ and invasive ductal carcinoma of the human breast.
    Amari M; Moriya T; Ishida T; Harada Y; Ohnuki K; Takeda M; Sasano H; Horii A; Ohuchi N
    Jpn J Clin Oncol; 2003 Nov; 33(11):556-62. PubMed ID: 14711979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion.
    Elsarraj HS; Hong Y; Valdez KE; Michaels W; Hook M; Smith WP; Chien J; Herschkowitz JI; Troester MA; Beck M; Inciardi M; Gatewood J; May L; Cusick T; McGinness M; Ricci L; Fan F; Tawfik O; Marks JR; Knapp JR; Yeh HW; Thomas P; Carrasco DR; Fields TA; Godwin AK; Behbod F
    Breast Cancer Res; 2015 Sep; 17():128. PubMed ID: 26384318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression.
    Heselmeyer-Haddad K; Berroa Garcia LY; Bradley A; Ortiz-Melendez C; Lee WJ; Christensen R; Prindiville SA; Calzone KA; Soballe PW; Hu Y; Chowdhury SA; Schwartz R; Schäffer AA; Ried T
    Am J Pathol; 2012 Nov; 181(5):1807-22. PubMed ID: 23062488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome evolution in ductal carcinoma in situ: invasion of the clones.
    Casasent AK; Edgerton M; Navin NE
    J Pathol; 2017 Jan; 241(2):208-218. PubMed ID: 27861897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparable cancer-relevant mutation profiles in synchronous ductal carcinoma in situ and invasive breast cancer.
    Bergholtz H; Kumar S; Wärnberg F; Lüders T; Kristensen V; Sørlie T
    Cancer Rep (Hoboken); 2020 Jun; 3(3):e1248. PubMed ID: 32671987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous chromosomal aberrations in intraductal breast lesions adjacent to invasive carcinoma.
    Aubele M; Cummings M; Walsch A; Zitzelsberger H; Nährig J; Höfler H; Werner M
    Anal Cell Pathol; 2000; 20(1):17-24. PubMed ID: 11007434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive ductal carcinoma In situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH.
    Aubele M; Mattis A; Zitzelsberger H; Walch A; Kremer M; Welzl G; Höfler H; Werner M
    Int J Cancer; 2000 Jan; 85(1):82-6. PubMed ID: 10585588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic differences between pure ductal carcinoma in situ and synchronous ductal carcinoma in situ with invasive breast cancer.
    Kim SY; Jung SH; Kim MS; Baek IP; Lee SH; Kim TM; Chung YJ; Lee SH
    Oncotarget; 2015 Apr; 6(10):7597-607. PubMed ID: 25831047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma.
    Castro NP; Osório CA; Torres C; Bastos EP; Mourão-Neto M; Soares FA; Brentani HP; Carraro DM
    Breast Cancer Res; 2008; 10(5):R87. PubMed ID: 18928525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.