These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37586385)

  • 1. The dose-related plateau effect of surviving fraction in normal tissue during the ultra-high-dose-rate radiotherapy.
    Hu S; Lan X; Zheng J; Bi Y; Ye Y; Si M; Fang Y; Wang J; Liu J; Chen Y; Chen Y; Xiang P; Niu T; Huang Y
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37586385
    [No Abstract]   [Full Text] [Related]  

  • 2. Modeling the impact of spatial oxygen heterogeneity on radiolytic oxygen depletion during FLASH radiotherapy.
    Taylor E; Hill RP; Létourneau D
    Phys Med Biol; 2022 Jun; 67(11):. PubMed ID: 35576920
    [No Abstract]   [Full Text] [Related]  

  • 3. Minimum dose rate estimation for pulsed FLASH radiotherapy: A dimensional analysis.
    Zhou S; Zheng D; Fan Q; Yan Y; Wang S; Lei Y; Besemer A; Zhou C; Enke C
    Med Phys; 2020 Jul; 47(7):3243-3249. PubMed ID: 32279337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-High Dose-Rate, Pulsed (FLASH) Radiotherapy with Carbon Ions: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment.
    Zakaria AM; Colangelo NW; Meesungnoen J; Azzam EI; Plourde MÉ; Jay-Gerin JP
    Radiat Res; 2020 Dec; 194(6):587-593. PubMed ID: 32853343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the impact of tissue oxygen profiles and oxygen depletion parameter uncertainties on biological response and therapeutic benefit of FLASH.
    Zhu H; Schuemann J; Zhang Q; Gerweck LE
    Med Phys; 2024 Jan; 51(1):670-681. PubMed ID: 36939370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FLASH effect depends on oxygen concentration.
    Adrian G; Konradsson E; Lempart M; Bäck S; Ceberg C; Petersson K
    Br J Radiol; 2020 Feb; 93(1106):20190702. PubMed ID: 31825653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The minimal FLASH sparing effect needed to compensate the increase of radiobiological damage due to hypofractionation for late-reacting tissues.
    Böhlen TT; Germond JF; Bourhis J; Bailat C; Bochud F; Moeckli R
    Med Phys; 2022 Dec; 49(12):7672-7682. PubMed ID: 35933554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect?
    Jin JY; Gu A; Wang W; Oleinick NL; Machtay M; Spring Kong FM
    Radiother Oncol; 2020 Aug; 149():55-62. PubMed ID: 32387486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy.
    Alanazi A; Meesungnoen J; Jay-Gerin JP
    Radiat Res; 2021 Feb; 195(2):149-162. PubMed ID: 33300999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the parameter space for effective oxygen depletion for FLASH radiation therapy.
    Rothwell BC; Kirkby NF; Merchant MJ; Chadwick AL; Lowe M; Mackay RI; Hendry JH; Kirkby KJ
    Phys Med Biol; 2021 Feb; 66(5):. PubMed ID: 33535191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling for predicting survival fraction of cells after ultra-high dose rate irradiation.
    Shiraishi Y; Matsuya Y; Kusumoto T; Fukunaga H
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38056015
    [No Abstract]   [Full Text] [Related]  

  • 12. Derivation of the optimum dose per fraction from the linear quadratic model.
    Jones B; Tan LT; Dale RG
    Br J Radiol; 1995 Aug; 68(812):894-902. PubMed ID: 7551788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential Molecular Mechanisms behind the Ultra-High Dose Rate "FLASH" Effect.
    Bogaerts E; Macaeva E; Isebaert S; Haustermans K
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36292961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faster and safer? FLASH ultra-high dose rate in radiotherapy.
    Durante M; Bräuer-Krisch E; Hill M
    Br J Radiol; 2018 Feb; 91(1082):20170628. PubMed ID: 29172684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy: effect of prolonged delivery time and applicability of the linear-quadratic model.
    Shibamoto Y; Otsuka S; Iwata H; Sugie C; Ogino H; Tomita N
    J Radiat Res; 2012; 53(1):1-9. PubMed ID: 21997195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering Time-Dependent DNA Damage Complexity, Repair, and Oxygen Tension: A Mechanistic Model for FLASH-Dose-Rate Radiation Therapy.
    Liew H; Mein S; Dokic I; Haberer T; Debus J; Abdollahi A; Mairani A
    Int J Radiat Oncol Biol Phys; 2021 Jun; 110(2):574-586. PubMed ID: 33412259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the ultra-high dose rate effect: implications for charged particle radiotherapy using protons and light ions.
    Wilson P; Jones B; Yokoi T; Hill M; Vojnovic B
    Br J Radiol; 2012 Oct; 85(1018):e933-9. PubMed ID: 22496068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: A molecular dynamics simulation.
    Abolfath R; Grosshans D; Mohan R
    Med Phys; 2020 Dec; 47(12):6551-6561. PubMed ID: 33089504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiobiological Aspects of FLASH Radiotherapy.
    Hageman E; Che PP; Dahele M; Slotman BJ; Sminia P
    Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Importance and Clinical Implications of FLASH Ultra-High Dose-Rate Studies for Proton and Heavy Ion Radiotherapy.
    Colangelo NW; Azzam EI
    Radiat Res; 2020 Jan; 193(1):1-4. PubMed ID: 31657670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.