BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37587013)

  • 1. Utilizing a divalent metal ion transporter to control biogenic nanoparticle synthesis.
    Gangan MS; Naughton KL; Boedicker JQ
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37587013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli.
    Chen YL; Tuan HY; Tien CW; Lo WH; Liang HC; Hu YC
    Biotechnol Prog; 2009; 25(5):1260-6. PubMed ID: 19630084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies.
    Shivashankarappa A; Sanjay KR
    Braz J Microbiol; 2020 Sep; 51(3):939-948. PubMed ID: 32067210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum.
    Grass G; Franke S; Taudte N; Nies DH; Kucharski LM; Maguire ME; Rensing C
    J Bacteriol; 2005 Mar; 187(5):1604-11. PubMed ID: 15716430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories.
    Plaza DO; Gallardo C; Straub YD; Bravo D; Pérez-Donoso JM
    Microb Cell Fact; 2016 May; 15():76. PubMed ID: 27154202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterially driven cadmium sulfide precipitation on porous membranes: Toward platforms for photocatalytic applications.
    Marusak KE; Krug JR; Feng Y; Cao Y; You L; Zauscher S
    Biointerphases; 2018 Feb; 13(1):011006. PubMed ID: 29426227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring Escherichia coli Chemotactic Sensing towards Cadmium by Computational Redesign of Ribose-Binding Protein.
    Li H; Zhang C; Chen X; You H; Lai L
    mSystems; 2022 Feb; 7(1):e0108421. PubMed ID: 35014867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threonine dehydratase enhances bacterial cadmium resistance via driving cysteine desulfuration and biomineralization of cadmium sulfide nanocrystals.
    Ma N; Cai R; Sun C
    J Hazard Mater; 2021 Sep; 417():126102. PubMed ID: 34015711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.
    Hossain ST; Mukherjee SK
    J Hazard Mater; 2013 Sep; 260():1073-82. PubMed ID: 23892173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Zinc and Iron Binuclear Transport Center of ZupT, a ZIP Transporter from
    Roberts CS; Ni F; Mitra B
    Biochemistry; 2021 Dec; 60(48):3738-3752. PubMed ID: 34793140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogenic Control of Manganese Doping in Zinc Sulfide Nanomaterial Using
    Chellamuthu P; Naughton K; Pirbadian S; Silva KPT; Chavez MS; El-Naggar MY; Boedicker J
    Front Microbiol; 2019; 10():938. PubMed ID: 31134005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microemulsion Mediated Synthesis and Characterization of CdS Nanoparticles and Its Anti-Biofilm Efficacy Against Escherichia Coli ATCC 25922.
    Dhanabalan K; Gurunathan K
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4200-4. PubMed ID: 26369030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos.
    Rodríguez-Fragoso P; Reyes-Esparza J; León-Buitimea A; Rodríguez-Fragoso L
    J Nanobiotechnology; 2012 Dec; 10():47. PubMed ID: 23270407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium-specific formation of metal sulfide 'Q-particles' by Klebsiella pneumoniae.
    Holmes JD; Richardson DJ; Saed S; Evans-Gowing R; Russell DA; Sodeau JR
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2521-2530. PubMed ID: 9274006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines.
    Wang L; Chen S; Ding Y; Zhu Q; Zhang N; Yu S
    J Photochem Photobiol B; 2018 Jan; 178():424-427. PubMed ID: 29207279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eco-friendly intracellular biosynthesis of CdS quantum dots without changing Escherichia coli's antibiotic resistance.
    Yan ZY; Du QQ; Qian J; Wan DY; Wu SM
    Enzyme Microb Technol; 2017 Jan; 96():96-102. PubMed ID: 27871390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging.
    Veeranarayanan S; Poulose AC; Mohamed MS; Nagaoka Y; Iwai S; Nakagame Y; Kashiwada S; Yoshida Y; Maekawa T; Kumar DS
    Int J Nanomedicine; 2012; 7():3769-86. PubMed ID: 22888233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study.
    Eskelsen JR; Xu J; Chiu M; Moon JW; Wilkins B; Graham DE; Gu B; Pierce EM
    Environ Sci Technol; 2018 Feb; 52(3):1139-1149. PubMed ID: 29258315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110.
    Sakpirom J; Kantachote D; Siripattanakul-Ratpukdi S; McEvoy J; Khan E
    Chemosphere; 2019 May; 223():455-464. PubMed ID: 30784752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesized CdS nanoparticles disturb E. coli growth through reactive oxygen production.
    Nasrin T; Patra M; Escudey M; Das TK
    Microb Pathog; 2019 Oct; 135():103639. PubMed ID: 31330264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.