These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37587131)

  • 1. Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces.
    Flores P; McBride SA; Galazka JM; Varanasi KK; Zea L
    NPJ Microgravity; 2023 Aug; 9(1):66. PubMed ID: 37587131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Space biofilms - An overview of the morphology of
    Flores P; Luo J; Mueller DW; Muecklich F; Zea L
    Biofilm; 2024 Jun; 7():100182. PubMed ID: 38370151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a spaceflight biofilm experiment.
    Zea L; Nisar Z; Rubin P; Cortesão M; Luo J; McBride SA; Moeller R; Klaus D; Müller D; Varanasi KK; Muecklich F; Stodieck L
    Acta Astronaut; 2018 Jul; 148():294-300. PubMed ID: 30449911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology of
    Hupka M; Kedia R; Schauer R; Shepard B; Granados-Presa M; Vande Hei M; Flores P; Zea L
    Life (Basel); 2023 Apr; 13(4):. PubMed ID: 37109532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.
    Kim W; Tengra FK; Young Z; Shong J; Marchand N; Chan HK; Pangule RC; Parra M; Dordick JS; Plawsky JL; Collins CH
    PLoS One; 2013; 8(4):e62437. PubMed ID: 23658630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bactericidal Effect of Calcium Oxide (Scallop-Shell Powder) Against Pseudomonas aeruginosa Biofilm on Quail Egg Shell, Stainless Steel, Plastic, and Rubber.
    Jung SJ; Park SY; Kim SE; Kang I; Park J; Lee J; Kim CM; Chung MS; Ha SD
    J Food Sci; 2017 Jul; 82(7):1682-1687. PubMed ID: 28627772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased biofilm formation ability in Klebsiella pneumoniae after short-term exposure to a simulated microgravity environment.
    Wang H; Yan Y; Rong D; Wang J; Wang H; Liu Z; Wang J; Yang R; Han Y
    Microbiologyopen; 2016 Oct; 5(5):793-801. PubMed ID: 27185296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms.
    Awad TS; Asker D; Hatton BD
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22902-22912. PubMed ID: 29888590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased biofilm formation ability of Acinetobacter baumannii after spaceflight on China's Shenzhou 11 spacecraft.
    Zhao X; Yu Y; Zhang X; Huang B; Bai P; Xu C; Li D; Zhang B; Liu C
    Microbiologyopen; 2019 Jun; 8(6):e00763. PubMed ID: 30379419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Pathogenic-Mixed Biofilm Formation of
    Gambino E; Maione A; Guida M; Albarano L; Carraturo F; Galdiero E; Di Onofrio V
    Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35329426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colony growth and biofilm formation of
    Cortesão M; Holland G; Schütze T; Laue M; Moeller R; Meyer V
    Front Microbiol; 2022; 13():975763. PubMed ID: 36212831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers.
    Jindal S; Anand S; Huang K; Goddard J; Metzger L; Amamcharla J
    J Dairy Sci; 2016 Dec; 99(12):9502-9513. PubMed ID: 27692715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm formation potential of Bacillus toyonensis and Pseudomonas aeruginosa on the stainless steel test surfaces in a model dairy batch system.
    Kütük D; Temiz A
    Folia Microbiol (Praha); 2022 Jun; 67(3):405-417. PubMed ID: 35031974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architectural Features and Resistance to Food-Grade Disinfectants in
    Rodríguez-López P; Rodríguez-Herrera JJ; López Cabo M
    Front Microbiol; 2022; 13():917964. PubMed ID: 35756028
    [No Abstract]   [Full Text] [Related]  

  • 15. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiotic-Impregnated Liquid-Infused Coatings Suppress the Formation of Methicillin-Resistant
    Villegas M; Alonso-Cantu C; Rahmani S; Wilson D; Hosseinidoust Z; Didar TF
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):27774-27783. PubMed ID: 34115463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability.
    Kim W; Tengra FK; Shong J; Marchand N; Chan HK; Young Z; Pangule RC; Parra M; Dordick JS; Plawsky JL; Collins CH
    BMC Microbiol; 2013 Nov; 13():241. PubMed ID: 24192060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of beta 1-4 linked polymers in the biofilm structure of marine Pseudomonas sp. CE-2 on 304 stainless steel coupons.
    Jain A; Bhosle NB
    Biofouling; 2008; 24(4):283-90. PubMed ID: 18568666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants.
    Abdallah M; Khelissa O; Ibrahim A; Benoliel C; Heliot L; Dhulster P; Chihib NE
    Int J Food Microbiol; 2015 Dec; 214():38-47. PubMed ID: 26233298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced
    Herrera-Jordan K; Pennington P; Zea L
    Microorganisms; 2024 Feb; 12(2):. PubMed ID: 38399797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.