BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37587141)

  • 1. Beyond 5 GHz excitation of a ZnO-based high-overtone bulk acoustic resonator on SiC substrate.
    Panda P; Chatterjee S; Tallur S; Laha A
    Sci Rep; 2023 Aug; 13(1):13329. PubMed ID: 37587141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of electrodes on the effective electromechanical coupling coefficient distributions of high-overtone bulk acoustic resonator.
    Liu M; Li J; Wang C; Li J; Ma J
    Ultrasonics; 2015 Feb; 56():566-74. PubMed ID: 25459064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the c-axis preferred orientation of ZnO film on various metal electrodes.
    Choi SH; Kim JS
    Ultramicroscopy; 2008 Sep; 108(10):1288-91. PubMed ID: 18556123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of ZnO films on surface acoustic wave properties of modified lead titanate ceramic substrates.
    Chu SY; Chen TY; Water W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2308-13. PubMed ID: 16463498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave Diamond-Based HBAR as a Highly Sensitive Sensor for Multiple Applications: Acoustic Attenuation in the Mo Film.
    Sorokin B; Asafiev N; Yashin D; Luparev N; Golovanov A; Kravchuk K
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator.
    Li J; Liu M; Wang C
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1.
    Zheng D; Guo P; Xiong J; Wang S
    Nanoscale Res Lett; 2016 Dec; 11(1):396. PubMed ID: 27624339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics.
    Gokhale VJ; Downey BP; Katzer DS; Nepal N; Lang AC; Stroud RM; Meyer DJ
    Nat Commun; 2020 May; 11(1):2314. PubMed ID: 32385280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra temperature-stable bulk-acoustic-wave resonators with SiO2 compensation layer.
    Yu H; Pang W; Zhang H; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2102-9. PubMed ID: 18019248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter characterization of high-overtone bulk acoustic resonators by resonant spectrum method.
    Zhang H; Zhang SY; Zheng K
    Ultrasonics; 2005 Aug; 43(8):635-42. PubMed ID: 15982469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 3.4 GHz BAW RF Filter Based on Single Crystal AlN Resonator for 5G Application.
    Ding R; Xuan W; Dong S; Zhang B; Gao F; Liu G; Zhang Z; Jin H; Luo J
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of AlGaN High Frequency Bulk Acoustic Resonator by Reactive RF Magnetron Co-sputtering System.
    Chang YC; Chen YC; Cheng CC
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive High Power RF Comb Filters Using Epitaxial GaN/NbN/SiC HBARs.
    Gokhale VJ; Downey BP; Roussos JA; Katzer DS; Meyer DJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3406-3414. PubMed ID: 34143735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation of hypersonic acoustic waves in diamond-based piezoelectric layered structure on the microwave frequencies up to 20GHz.
    Sorokin BP; Kvashnin GM; Novoselov AS; Bormashov VS; Golovanov AV; Burkov SI; Blank VD
    Ultrasonics; 2017 Jul; 78():162-165. PubMed ID: 28363121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin films of the [Formula: see text]-quartz [Formula: see text] solid solution.
    Zhou S; Antoja-Lleonart J; Ocelík V; Noheda B
    Sci Rep; 2022 Feb; 12(1):2010. PubMed ID: 35132092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deposition and wet etching of Mg-doped ZnO films and their applications for solidly mounted resonators.
    Han C; Ma H; Wang Y; Liu J; Teng L; Lv H; Zhao Q; Wang X
    RSC Adv; 2020 Mar; 10(16):9672-9677. PubMed ID: 35497202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of surface acoustic waves excited by (1120) ZnO films deposited on R-sapphire substrates.
    Wang Y; Zhang SY; Fan L; Shui XJ; Zhang ZN; Wasa K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1213-8. PubMed ID: 25004484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromachined acoustic wave resonator isolated from substrate.
    Pang W; Zhang H; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Aug; 52(8):1239-46. PubMed ID: 16245593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of deposition conditions on the structural and acoustic characteristics of (1120) ZnO thin films on R-sapphire substrates.
    Wang Y; Wasa K; Zhang SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1613-7. PubMed ID: 22899108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.