These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37587300)

  • 1. Microstructure and crystal order during freezing of supercooled water drops.
    Kalita A; Mrozek-McCourt M; Kaldawi TF; Willmott PR; Loh ND; Marte S; Sierra RG; Laksmono H; Koglin JE; Hayes MJ; Paul RH; Guillet SAH; Aquila AL; Liang M; Boutet S; Stan CA
    Nature; 2023 Aug; 620(7974):557-561. PubMed ID: 37587300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface crystallization of supercooled water in clouds.
    Tabazadeh A; Djikaev YS; Reiss H
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15873-8. PubMed ID: 12456877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Cubic Can Ice Be?
    Amaya AJ; Pathak H; Modak VP; Laksmono H; Loh ND; Sellberg JA; Sierra RG; McQueen TA; Hayes MJ; Williams GJ; Messerschmidt M; Boutet S; Bogan MJ; Nilsson A; Stan CA; Wyslouzil BE
    J Phys Chem Lett; 2017 Jul; 8(14):3216-3222. PubMed ID: 28657757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of liquid clouds to homogenous freezing parameterizations.
    Herbert RJ; Murray BJ; Dobbie SJ; Koop T
    Geophys Res Lett; 2015 Mar; 42(5):1599-1605. PubMed ID: 26074652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic apparatus for the study of ice nucleation in supercooled water drops.
    Stan CA; Schneider GF; Shevkoplyas SS; Hashimoto M; Ibanescu M; Wiley BJ; Whitesides GM
    Lab Chip; 2009 Aug; 9(16):2293-305. PubMed ID: 19636459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols.
    DeMott PJ; Mason RH; McCluskey CS; Hill TCJ; Perkins RJ; Desyaterik Y; Bertram AK; Trueblood JV; Grassian VH; Qiu Y; Molinero V; Tobo Y; Sultana CM; Lee C; Prather KA
    Environ Sci Process Impacts; 2018 Nov; 20(11):1559-1569. PubMed ID: 30382263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of ice crystallized from supercooled water.
    Malkin TL; Murray BJ; Brukhno AV; Anwar J; Salzmann CG
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1041-5. PubMed ID: 22232652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat of freezing for supercooled water: measurements at atmospheric pressure.
    Cantrell W; Kostinski A; Szedlak A; Johnson A
    J Phys Chem A; 2011 Jun; 115(23):5729-34. PubMed ID: 21087023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
    Rzesanke D; Nadolny J; Duft D; Müller R; Kiselev A; Leisner T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9359-63. PubMed ID: 22294097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.
    Yang F; Cruikshank O; He W; Kostinski A; Shaw RA
    Phys Rev E; 2018 Feb; 97(2-1):023103. PubMed ID: 29548219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of solute crystallisation in aqueous H(+)-NH(4)(+)-SO4(2-)-H2O droplets.
    Murray BJ; Bertram AK
    Phys Chem Chem Phys; 2008 Jun; 10(22):3287-301. PubMed ID: 18500406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New metastable form of ice and its role in the homogeneous crystallization of water.
    Russo J; Romano F; Tanaka H
    Nat Mater; 2014 Jul; 13(7):733-9. PubMed ID: 24836734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.
    Knopf DA; Alpert PA
    Faraday Discuss; 2013; 165():513-34. PubMed ID: 24601020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscopic Dynamical Model of Ice Crystal Nucleation Leading to Droplet Freezing.
    Wang L; Dai J; Hao P; He F; Zhang X
    ACS Omega; 2020 Feb; 5(7):3322-3332. PubMed ID: 32118147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds.
    Atkinson JD; Murray BJ; Woodhouse MT; Whale TF; Baustian KJ; Carslaw KS; Dobbie S; O'Sullivan D; Malkin TL
    Nature; 2013 Jun; 498(7454):355-8. PubMed ID: 23760484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous freezing of water droplets for different volumes and cooling rates.
    Shardt N; Isenrich FN; Waser B; Marcolli C; Kanji ZA; deMello AJ; Lohmann U
    Phys Chem Chem Phys; 2022 Nov; 24(46):28213-28221. PubMed ID: 36413087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.