These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37587330)

  • 21. Effects of pulsating heat source on interstitial fluid transport in tumour tissues.
    Andreozzi A; Iasiello M; Netti PA
    J R Soc Interface; 2020 Sep; 17(170):20200612. PubMed ID: 32993430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective Governing Equations for Viscoelastic Composites.
    Miller L; Ramírez-Torres A; Rodríguez-Ramos R; Penta R
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the microvascular network structure on diffusion and consumption of anticancer drugs.
    Mascheroni P; Penta R
    Int J Numer Method Biomed Eng; 2017 Oct; 33(10):. PubMed ID: 27921393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.
    Stokes IA; Laible JP; Gardner-Morse MG; Costi JJ; Iatridis JC
    Ann Biomed Eng; 2011 Jan; 39(1):122-31. PubMed ID: 20711754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Poroelasticity Theory Approach to Study the Mechanisms Leading to Elevated Interstitial Fluid Pressure in Solid Tumours.
    Burazin A; Drapaca CS; Tenti G; Sivaloganathan S
    Bull Math Biol; 2018 May; 80(5):1172-1194. PubMed ID: 29282596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction.
    Richardson SIH; Gao H; Cox J; Janiczek R; Griffith BE; Berry C; Luo X
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3446. PubMed ID: 33559359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-layered poroelastic slab model under cyclic loading for a single osteon.
    Chen Y; Wang W; Ding S; Wang X; Chen Q; Li X
    Biomed Eng Online; 2018 Jul; 17(1):97. PubMed ID: 30016971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimum design requirements for a poroelastic mimic of articular cartilage.
    Tan WS; Moore AC; Stevens MM
    J Mech Behav Biomed Mater; 2023 Jan; 137():105528. PubMed ID: 36343521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the infusion of a therapeutic agent into a solid tumor modeled as a poroelastic medium.
    Bottaro A; Ansaldi T
    J Biomech Eng; 2012 Aug; 134(8):084501. PubMed ID: 22938361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freezing-induced fluid-matrix interaction in poroelastic material.
    Han B; Miller JD; Jung JK
    J Biomech Eng; 2009 Feb; 131(2):021002. PubMed ID: 19102561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage.
    Moore AC; Hennessy MG; Nogueira LP; Franks SJ; Taffetani M; Seong H; Kang YK; Tan WS; Miklosic G; El Laham R; Zhou K; Zharova L; King JR; Wagner B; Haugen HJ; Münch A; Stevens MM
    Acta Biomater; 2023 Sep; 167():69-82. PubMed ID: 37331613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.
    Wahlquist JA; DelRio FW; Randolph MA; Aziz AH; Heveran CM; Bryant SJ; Neu CP; Ferguson VL
    Acta Biomater; 2017 Dec; 64():41-49. PubMed ID: 29037894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the effects of microstructural changes induced by myocardial infarction on the elastic parameters of the heart.
    Miller L; Penta R
    Biomech Model Mechanobiol; 2023 Jun; 22(3):1019-1033. PubMed ID: 36867283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiscale biphasic modelling of peritumoural collagen microstructure: The effect of tumour growth on permeability and fluid flow.
    Wijeratne PA; Hipwell JH; Hawkes DJ; Stylianopoulos T; Vavourakis V
    PLoS One; 2017; 12(9):e0184511. PubMed ID: 28902902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective equations governing an active poroelastic medium.
    Collis J; Brown DL; Hubbard ME; O'Dea RD
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160755. PubMed ID: 28293138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature.
    Sefidgar M; Soltani M; Raahemifar K; Sadeghi M; Bazmara H; Bazargan M; Mousavi Naeenian M
    Microvasc Res; 2015 May; 99():43-56. PubMed ID: 25724978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From arteries to boreholes: steady-state response of a poroelastic cylinder to fluid injection.
    Auton LC; MacMinn CW
    Proc Math Phys Eng Sci; 2017 May; 473(2201):20160753. PubMed ID: 28588399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.
    Cowin SC; Gailani G; Benalla M
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3401-44. PubMed ID: 19657006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head.
    Causin P; Guidoboni G; Harris A; Prada D; Sacco R; Terragni S
    Math Biosci; 2014 Nov; 257():33-41. PubMed ID: 25149561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.