These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37587645)

  • 1. Perovskite Cathodes for Aqueous and Organic Iodine Batteries Operating Under One and Two Electrons Redox Modes.
    Li X; Wang S; Zhang D; Li P; Chen Z; Chen A; Huang Z; Liang G; Rogach AL; Zhi C
    Adv Mater; 2024 Jan; 36(4):e2304557. PubMed ID: 37587645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halide Exchange in Perovskites Enables Bromine/Iodine Hybrid Cathodes for Highly Durable Zinc Ion Batteries.
    Wang S; Wang Y; Wei Z; Zhu J; Chen Z; Hong H; Xiong Q; Zhang D; Li S; Wang S; Huang Y; Zhi C
    Adv Mater; 2024 Jun; 36(26):e2401924. PubMed ID: 38593988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution.
    Ma W; Liu T; Xu C; Lei C; Jiang P; He X; Liang X
    Nat Commun; 2023 Sep; 14(1):5508. PubMed ID: 37679335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new zinc-ion battery cathode with high-performance: Loofah-like lanthanum manganese perovskite.
    Zhu T; Zheng K; Wang P; Cai X; Wang X; Gao D; Yu D; Chen C; Liu Y
    J Colloid Interface Sci; 2022 Mar; 610():796-804. PubMed ID: 34862045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries.
    Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode.
    Zhao Y; Wang L; Byon HR
    Nat Commun; 2013; 4():1896. PubMed ID: 23695690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-Layered Perovskite Oxyfluoride Cathodes with High Capacity Involving O-O Bond Formation for Fluoride-Ion Batteries.
    Miki H; Yamamoto K; Nakaki H; Yoshinari T; Nakanishi K; Nakanishi S; Iba H; Miyawaki J; Harada Y; Kuwabara A; Wang Y; Watanabe T; Matsunaga T; Maeda K; Kageyama H; Uchimoto Y
    J Am Chem Soc; 2024 Feb; 146(6):3844-3853. PubMed ID: 38193701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidentate Coordination Structure Facilitates High-Voltage and High-Utilization Aqueous Zn-I2 Batteries.
    Wang M; Meng Y; Sajid M; Xie Z; Tong P; Ma Z; Zhang K; Shen D; Luo R; Song L; Wu L; Zheng X; Li X; Chen W
    Angew Chem Int Ed Engl; 2024 Jun; ():e202404784. PubMed ID: 38868978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Energy Aqueous/Organic Hybrid Batteries Enabled by Cu
    Bi S; Zhang Y; Wang H; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312172. PubMed ID: 37853603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Electron Redox Chemistry Enabled High-Performance Iodide-Ion Conversion Battery.
    Li X; Wang Y; Chen Z; Li P; Liang G; Huang Z; Yang Q; Chen A; Cui H; Dong B; He H; Zhi C
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202113576. PubMed ID: 34931752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perovskite-Type SrVO
    Li X; Lin Z; Jin N; Yang X; Du Y; Lei L; Rozier P; Simon P; Liu Y
    Adv Mater; 2022 Nov; 34(46):e2107262. PubMed ID: 34677908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary Amines Functionalized Organocatalytic Iodine Redox for High-Performance Aqueous Dual-Ion Batteries.
    Yang R; Yao W; Zhou L; Zhang F; Zheng Y; Lee CS; Tang Y
    Adv Mater; 2024 Jun; 36(23):e2314247. PubMed ID: 38332496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodine Redox Chemistry in Rechargeable Batteries.
    Ma J; Liu M; He Y; Zhang J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12636-12647. PubMed ID: 32939916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Organic Cathode Material Based on Quinone and Pyrazine Motifs for Rechargeable Lithium and Zinc Batteries.
    Menart S; Lužanin O; Pirnat K; Pahovnik D; Moškon J; Dominko R
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16029-16039. PubMed ID: 38511931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity.
    Jiang Q; Xiong P; Liu J; Xie Z; Wang Q; Yang XQ; Hu E; Cao Y; Sun J; Xu Y; Chen L
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5273-5277. PubMed ID: 31893570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Development of CO
    Xie J; Wang Y
    Acc Chem Res; 2019 Jun; 52(6):1721-1729. PubMed ID: 31120728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.