These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37587645)

  • 21. Reduced Graphene Oxide/LiI Composite Lithium Ion Battery Cathodes.
    Kim S; Kim SK; Sun P; Oh N; Braun PV
    Nano Lett; 2017 Nov; 17(11):6893-6899. PubMed ID: 29053279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tellurium with Reversible Six-Electron Transfer Chemistry for High-Performance Zinc Batteries.
    Chen Z; Wang S; Wei Z; Wang Y; Wu Z; Hou Y; Zhu J; Wang Y; Liang G; Huang Z; Chen A; Wang D; Zhi C
    J Am Chem Soc; 2023 Sep; 145(37):20521-20529. PubMed ID: 37672393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Electron Transfer-Based High-Capacity Organic Lithium-Iodine (Chlorine) Batteries.
    Li X; Wang Y; Lu J; Li S; Li P; Huang Z; Liang G; He H; Zhi C
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310168. PubMed ID: 37656770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox Electrolytes-Assisting Aqueous Zn-Based Batteries by Pseudocapacitive Multiple Perovskite Fluorides Cathode and Charge Storage Mechanisms.
    Wang A; Ding R; Li Y; Liu M; Yang F; Zhang Y; Fang Q; Yan M; Xie J; Chen Z; Yan Z; He Y; Guo J; Sun X; Liu E
    Small; 2023 Aug; 19(33):e2302333. PubMed ID: 37166023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unlocking the Capacity of Bismuth Oxide by a Redox Mediator Strategy for High-Performance Aqueous Zn-Ion Batteries.
    Liu N; Liu Z; Li J; Ge Z; Fan L; Zhao C; Guo Z; Chen A; Lu X; Zhang Y; Zhang N; Zhang X
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37903333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector.
    Zhao Y; Hong M; Bonnet Mercier N; Yu G; Choi HC; Byon HR
    Nano Lett; 2014 Feb; 14(2):1085-92. PubMed ID: 24475968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries.
    Nam KW; Park SS; Dos Reis R; Dravid VP; Kim H; Mirkin CA; Stoddart JF
    Nat Commun; 2019 Oct; 10(1):4948. PubMed ID: 31666515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anionic Co-insertion Charge Storage in Dinitrobenzene Cathodes for High-Performance Aqueous Zinc-Organic Batteries.
    Song Z; Miao L; Duan H; Ruhlmann L; Lv Y; Zhu D; Li L; Gan L; Liu M
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202208821. PubMed ID: 35781762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iodine doping induced activation of covalent organic framework cathodes for Li-ion batteries.
    Ren G; Cai F; Wang S; Luo Z; Yuan Z
    RSC Adv; 2023 Jun; 13(27):18983-18990. PubMed ID: 37362603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry.
    Yang S; Li C; Lv H; Guo X; Wang Y; Han C; Zhi C; Li H
    Small Methods; 2021 Oct; 5(10):e2100611. PubMed ID: 34927954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and Electrochemical Performance of the Orthorhombic V
    Tan X; Guo G; Wang K; Zhang H
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A High-Energy Aqueous All-Sulfur Battery.
    Wang H; Bi S; Zhang Y; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202317825. PubMed ID: 38238258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lead-Free Double Perovskite Cs
    Yang S; Liang Q; Wu H; Pi J; Wang Z; Luo Y; Liu Y; Long Z; Zhou D; Wen Y; Wang Q; Guo J; Qiu J
    J Phys Chem Lett; 2022 Jun; 13(22):4981-4987. PubMed ID: 35647795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precipitated Iodine Cathode Enabled by Trifluoromethanesulfonate Oxidation for Cathode/Electrolyte Mutualistic Aqueous Zn-I Batteries.
    Zhang K; Yu Q; Sun J; Tie Z; Jin Z
    Adv Mater; 2024 Feb; 36(6):e2309838. PubMed ID: 37949441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Dendrite-Free Tin Anode for High-Energy Aqueous Redox Flow Batteries.
    Yao Y; Wang Z; Li Z; Lu YC
    Adv Mater; 2021 Apr; 33(15):e2008095. PubMed ID: 33694199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode.
    Zhao Q; Lu Y; Zhu Z; Tao Z; Chen J
    Nano Lett; 2015 Sep; 15(9):5982-7. PubMed ID: 26241461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferrocene-Based Mixed-Valence Metal-Organic Framework as an Efficient and Stable Cathode for Lithium-Ion-Based Dual-Ion Battery.
    Li C; Yang H; Xie J; Wang K; Li J; Zhang Q
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32719-32725. PubMed ID: 32602692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Capacity Aqueous Storage in Vanadate Cathodes Promoted by the Zn-Ion and Proton Intercalation and Conversion-Intercalation of Vanadyl Ions.
    Kim S; Shan X; Abeykoon M; Kwon G; Olds D; Teng X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25993-26000. PubMed ID: 34019372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries.
    Jin Y; Zou L; Liu L; Engelhard MH; Patel RL; Nie Z; Han KS; Shao Y; Wang C; Zhu J; Pan H; Liu J
    Adv Mater; 2019 Jul; 31(29):e1900567. PubMed ID: 31157468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.