These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37587688)

  • 1. Inhibitory mechanism of CRISPR-Cas9 by AcrIIC4.
    Li X; Liao F; Gao J; Song G; Zhang C; Ji N; Wang X; Wen J; He J; Wei Y; Zhang H; Li Z; Yu G; Yin H
    Nucleic Acids Res; 2023 Sep; 51(17):9442-9451. PubMed ID: 37587688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AcrIIC4 inhibits type II-C Cas9 by preventing R-loop formation.
    Sun W; Cheng Z; Wang J; Yang J; Li X; Wang J; Chen M; Yang X; Sheng G; Lou J; Wang Y
    Proc Natl Acad Sci U S A; 2023 Aug; 120(31):e2303675120. PubMed ID: 37494395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the anti-CRISPR, AcrIIC4.
    Kim GE; Lee SY; Park HH
    Protein Sci; 2021 Dec; 30(12):2474-2481. PubMed ID: 34676610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1.
    Zhu Y; Yin S; Li Z
    Biochem Biophys Res Commun; 2023 Apr; 654():34-39. PubMed ID: 36878037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo.
    Ibraheim R; Song CQ; Mir A; Amrani N; Xue W; Sontheimer EJ
    Genome Biol; 2018 Sep; 19(1):137. PubMed ID: 30231914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins.
    Zhu Y; Gao A; Zhan Q; Wang Y; Feng H; Liu S; Gao G; Serganov A; Gao P
    Mol Cell; 2019 Apr; 74(2):296-309.e7. PubMed ID: 30850331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition mechanisms of CRISPR-Cas9 by AcrIIA17 and AcrIIA18.
    Wang X; Li X; Ma Y; He J; Liu X; Yu G; Yin H; Zhang H
    Nucleic Acids Res; 2022 Jan; 50(1):512-521. PubMed ID: 34893860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer.
    Mahendra C; Christie KA; Osuna BA; Pinilla-Redondo R; Kleinstiver BP; Bondy-Denomy J
    Nat Microbiol; 2020 Apr; 5(4):620-629. PubMed ID: 32218510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of potent and versatile CRISPR-Cas9 inhibitors engineered for chemically controllable genome editing.
    Song G; Zhang F; Tian C; Gao X; Zhu X; Fan D; Tian Y
    Nucleic Acids Res; 2022 Mar; 50(5):2836-2853. PubMed ID: 35188577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor.
    Kim I; Jeong M; Ka D; Han M; Kim NK; Bae E; Suh JY
    Sci Rep; 2018 Mar; 8(1):3883. PubMed ID: 29497118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type II Anti-CRISPR Proteins.
    Hwang S; Maxwell KL
    J Mol Biol; 2023 Apr; 435(7):168041. PubMed ID: 36893938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cas9 degradation in human cells using phage anti-CRISPR proteins.
    Meacham Z; de Tacca LA; Bondy-Denomy J; Rabuka D; Schelle M
    PLoS Biol; 2023 Dec; 21(12):e3002431. PubMed ID: 38064533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems.
    Gramelspacher MJ; Hou Z; Zhang Y
    Methods; 2020 Feb; 172():32-41. PubMed ID: 31228550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
    Rousseau BA; Hou Z; Gramelspacher MJ; Zhang Y
    Mol Cell; 2018 Mar; 69(5):906-914.e4. PubMed ID: 29456189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naturally Occurring Off-Switches for CRISPR-Cas9.
    Pawluk A; Amrani N; Zhang Y; Garcia B; Hidalgo-Reyes Y; Lee J; Edraki A; Shah M; Sontheimer EJ; Maxwell KL; Davidson AR
    Cell; 2016 Dec; 167(7):1829-1838.e9. PubMed ID: 27984730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Investigation of Self-Assembly and Target Binding of Anti-CRISPR AcrIIC2.
    Kim Y; Lee SJ; Park C; Koo J; Bae E; Lee BJ; Suh JY
    CRISPR J; 2021 Jun; 4(3):448-458. PubMed ID: 34042500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phage-Encoded Anti-CRISPR Defenses.
    Stanley SY; Maxwell KL
    Annu Rev Genet; 2018 Nov; 52():445-464. PubMed ID: 30208287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain.
    Kim Y; Lee SJ; Yoon HJ; Kim NK; Lee BJ; Suh JY
    FEBS J; 2019 Dec; 286(23):4661-4674. PubMed ID: 31389128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2.
    Thavalingam A; Cheng Z; Garcia B; Huang X; Shah M; Sun W; Wang M; Harrington L; Hwang S; Hidalgo-Reyes Y; Sontheimer EJ; Doudna J; Davidson AR; Moraes TF; Wang Y; Maxwell KL
    Nat Commun; 2019 Jun; 10(1):2806. PubMed ID: 31243272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.