These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37587790)

  • 1. NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures.
    Martínez-Enguita D; Dwivedi SK; Jörnsten R; Gustafsson M
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37587790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders.
    Wang Z; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):568. PubMed ID: 31760935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Linear Regression and Deep Learning Approach for Detecting Reliable Genetic Alterations in Cancer Using DNA Methylation and Gene Expression Data.
    Mallik S; Seth S; Bhadra T; Zhao Z
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32806782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means.
    Hadipour H; Liu C; Davis R; Cardona ST; Hu P
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):132. PubMed ID: 35428173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning in the identification of prognostic DNA methylation biomarkers among patients with cancer: A systematic review of epigenome-wide studies.
    Yuan T; Edelmann D; Fan Z; Alwers E; Kather JN; Brenner H; Hoffmeister M
    Artif Intell Med; 2023 Sep; 143():102589. PubMed ID: 37673571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EpiTEAmDNA: Sequence feature representation via transfer learning and ensemble learning for identifying multiple DNA epigenetic modification types across species.
    Li F; Liu S; Li K; Zhang Y; Duan M; Yao Z; Zhu G; Guo Y; Wang Y; Huang L; Zhou F
    Comput Biol Med; 2023 Jun; 160():107030. PubMed ID: 37196456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latent Representation of the Human Pan-Celltype Epigenome Through a Deep Recurrent Neural Network.
    Dsouza KB; Li AY; Bhargava VK; Libbrecht MW
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2313-2323. PubMed ID: 34043510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrative Framework for Protein Interaction Network and Methylation Data to Discover Epigenetic Modules.
    Ma X; Sun P; Zhang ZY
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1855-1866. PubMed ID: 29994031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple-Molecule Drug Design Based on Systems Biology Approaches and Deep Neural Network to Mitigate Human Skin Aging.
    Yeh SJ; Lin JF; Chen BS
    Molecules; 2021 May; 26(11):. PubMed ID: 34073305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Workflow to Mine Frequent DNA Co-methylation Clusters in DNA Methylome Data.
    Zhang J; Huang K
    Methods Mol Biol; 2022; 2432():153-165. PubMed ID: 35505214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning a confidence score and the latent space of a new supervised autoencoder for diagnosis and prognosis in clinical metabolomic studies.
    Chardin D; Gille C; Pourcher T; Humbert O; Barlaud M
    BMC Bioinformatics; 2022 Sep; 23(1):361. PubMed ID: 36050631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pan-cancer somatic mutation embedding using autoencoders.
    Palazzo M; Beauseroy P; Yankilevich P
    BMC Bioinformatics; 2019 Dec; 20(1):655. PubMed ID: 31829157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenome-450K-wide methylation signatures of active cigarette smoking: The Young Finns Study.
    Mishra PP; Hänninen I; Raitoharju E; Marttila S; Mishra BH; Mononen N; Kähönen M; Hurme M; Raitakari O; Törönen P; Holm L; Lehtimäki T
    Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32583859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adversarial deconfounding autoencoder for learning robust gene expression embeddings.
    Dincer AB; Janizek JD; Lee SI
    Bioinformatics; 2020 Dec; 36(Suppl_2):i573-i582. PubMed ID: 33381842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.