These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37588156)
21. Deep learning innovations in diagnosing diabetic retinopathy: The potential of transfer learning and the DiaCNN model. Shoaib MR; Emara HM; Zhao J; El-Shafai W; Soliman NF; Mubarak AS; Omer OA; El-Samie FEA; Esmaiel H Comput Biol Med; 2024 Feb; 169():107834. PubMed ID: 38159396 [TBL] [Abstract][Full Text] [Related]
22. A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet. Vijayan M; S V Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832262 [TBL] [Abstract][Full Text] [Related]
23. Explainable Diabetic Retinopathy using EfficientNET Chetoui M; Akhloufi MA Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1966-1969. PubMed ID: 33018388 [TBL] [Abstract][Full Text] [Related]
24. Multi-Model Domain Adaptation for Diabetic Retinopathy Classification. Zhang G; Sun B; Zhang Z; Pan J; Yang W; Liu Y Front Physiol; 2022; 13():918929. PubMed ID: 35845987 [TBL] [Abstract][Full Text] [Related]
25. A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. AbdelMaksoud E; Barakat S; Elmogy M Med Biol Eng Comput; 2022 Jul; 60(7):2015-2038. PubMed ID: 35545738 [TBL] [Abstract][Full Text] [Related]
26. Diabetic retinopathy prediction based on vision transformer and modified capsule network. Oulhadj M; Riffi J; Khodriss C; Mahraz AM; Yahyaouy A; Abdellaoui M; Andaloussi IB; Tairi H Comput Biol Med; 2024 Jun; 175():108523. PubMed ID: 38701591 [TBL] [Abstract][Full Text] [Related]
27. Fine-grained attention & knowledge-based collaborative network for diabetic retinopathy grading. Tian M; Wang H; Sun Y; Wu S; Tang Q; Zhang M Heliyon; 2023 Jul; 9(7):e17217. PubMed ID: 37449186 [TBL] [Abstract][Full Text] [Related]
28. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification. Fu Y; Wei Y; Chen S; Chen C; Zhou R; Li H; Qiu M; Xie J; Huang D Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38271723 [No Abstract] [Full Text] [Related]
29. Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection. Albadr MAA; Ayob M; Tiun S; Al-Dhief FT; Hasan MK Front Public Health; 2022; 10():925901. PubMed ID: 35979449 [TBL] [Abstract][Full Text] [Related]
30. MobileNet-V2 /IFHO model for Accurate Detection of early-stage diabetic retinopathy. Huang C; Sarabi M; Ragab AE Heliyon; 2024 Sep; 10(17):e37293. PubMed ID: 39296185 [TBL] [Abstract][Full Text] [Related]
31. A novel deep learning model for diabetic retinopathy detection in retinal fundus images using pre-trained CNN and HWBLSTM. Hemanth SV; Alagarsamy S; Rajkumar TD J Biomol Struct Dyn; 2024 Feb; ():1-19. PubMed ID: 38373067 [TBL] [Abstract][Full Text] [Related]
32. Diabetic Retinopathy Prediction Based on Wavelet Decomposition and Modified Capsule Network. Oulhadj M; Riffi J; Khodriss C; Mahraz AM; Bennis A; Yahyaouy A; Chraibi F; Abdellaoui M; Andaloussi IB; Tairi H J Digit Imaging; 2023 Aug; 36(4):1739-1751. PubMed ID: 36973632 [TBL] [Abstract][Full Text] [Related]
33. A unified technique for entropy enhancement based diabetic retinopathy detection using hybrid neural network. Fatima ; Imran M; Ullah A; Arif M; Noor R Comput Biol Med; 2022 Jun; 145():105424. PubMed ID: 35349799 [TBL] [Abstract][Full Text] [Related]
34. Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC). Das D; Biswas SK; Bandyopadhyay S Multimed Tools Appl; 2022 Nov; ():1-59. PubMed ID: 36467440 [TBL] [Abstract][Full Text] [Related]
35. Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study. Zhang G; Lin JW; Wang J; Ji J; Cen LP; Chen W; Xie P; Zheng Y; Xiong Y; Wu H; Li D; Ng TK; Pang CP; Zhang M BMJ Open; 2022 Jul; 12(7):e060155. PubMed ID: 35902186 [TBL] [Abstract][Full Text] [Related]
37. A New Approach for Detecting Fundus Lesions Using Image Processing and Deep Neural Network Architecture Based on YOLO Model. Santos C; Aguiar M; Welfer D; Belloni B Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080898 [TBL] [Abstract][Full Text] [Related]
38. Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review. Farahat Z; Zrira N; Souissi N; Bennani Y; Bencherif S; Benamar S; Belmekki M; Ngote MN; Megdiche K Surv Ophthalmol; 2024; 69(5):707-721. PubMed ID: 38885761 [TBL] [Abstract][Full Text] [Related]
39. Automatic Detection and Classification of Diabetic Retinopathy Using the Improved Pooling Function in the Convolution Neural Network. Bhimavarapu U; Chintalapudi N; Battineni G Diagnostics (Basel); 2023 Aug; 13(15):. PubMed ID: 37568969 [TBL] [Abstract][Full Text] [Related]
40. An automated unsupervised deep learning-based approach for diabetic retinopathy detection. Naz H; Nijhawan R; Ahuja NJ Med Biol Eng Comput; 2022 Dec; 60(12):3635-3654. PubMed ID: 36274090 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]