These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37588156)
41. Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data. Lo J; Yu TT; Ma D; Zang P; Owen JP; Zhang Q; Wang RK; Beg MF; Lee AY; Jia Y; Sarunic MV Ophthalmol Sci; 2021 Dec; 1(4):100069. PubMed ID: 36246944 [TBL] [Abstract][Full Text] [Related]
42. A Hybrid Technique for Diabetic Retinopathy Detection Based on Ensemble-Optimized CNN and Texture Features. Ishtiaq U; Abdullah ERMF; Ishtiaque Z Diagnostics (Basel); 2023 May; 13(10):. PubMed ID: 37238304 [TBL] [Abstract][Full Text] [Related]
43. Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm. Li F; Liu Z; Chen H; Jiang M; Zhang X; Wu Z Transl Vis Sci Technol; 2019 Nov; 8(6):4. PubMed ID: 31737428 [TBL] [Abstract][Full Text] [Related]
44. Effect of simulated cataract on the accuracy of artificial intelligence in detecting diabetic retinopathy in color fundus photos. Crane AB; Choudhry HS; Dastjerdi MH Indian J Ophthalmol; 2024 Jan; 72(Suppl 1):S42-S45. PubMed ID: 38131541 [TBL] [Abstract][Full Text] [Related]
45. Segmentation-Assisted Fully Convolutional Neural Network Enhances Deep Learning Performance to Identify Proliferative Diabetic Retinopathy. Alam M; Zhao EJ; Lam CK; Rubin DL J Clin Med; 2023 Jan; 12(1):. PubMed ID: 36615186 [TBL] [Abstract][Full Text] [Related]
46. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning. Gao Z; Jin K; Yan Y; Liu X; Shi Y; Ge Y; Pan X; Lu Y; Wu J; Wang Y; Ye J Graefes Arch Clin Exp Ophthalmol; 2022 May; 260(5):1663-1673. PubMed ID: 35066704 [TBL] [Abstract][Full Text] [Related]
47. A new ultra-wide-field fundus dataset to diabetic retinopathy grading using hybrid preprocessing methods. Liu H; Teng L; Fan L; Sun Y; Li H Comput Biol Med; 2023 May; 157():106750. PubMed ID: 36931202 [TBL] [Abstract][Full Text] [Related]
48. Recognition of diabetic retinopathy and macular edema using deep learning. Jeribi F; Nazir T; Nawaz M; Javed A; Alhameed M; Tahir A Med Biol Eng Comput; 2024 Sep; 62(9):2687-2701. PubMed ID: 38684593 [TBL] [Abstract][Full Text] [Related]
50. Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems. Hacisoftaoglu RE; Karakaya M; Sallam AB Pattern Recognit Lett; 2020 Jul; 135():409-417. PubMed ID: 32704196 [TBL] [Abstract][Full Text] [Related]
51. Translation of Color Fundus Photography into Fluorescein Angiography Using Deep Learning for Enhanced Diabetic Retinopathy Screening. Shi D; Zhang W; He S; Chen Y; Song F; Liu S; Wang R; Zheng Y; He M Ophthalmol Sci; 2023 Dec; 3(4):100401. PubMed ID: 38025160 [TBL] [Abstract][Full Text] [Related]
52. DR-NASNet: Automated System to Detect and Classify Diabetic Retinopathy Severity Using Improved Pretrained NASNet Model. Sajid MZ; Hamid MF; Youssef A; Yasmin J; Perumal G; Qureshi I; Naqi SM; Abbas Q Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627904 [TBL] [Abstract][Full Text] [Related]
53. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN. Durai DBJ; Jaya T Med Biol Eng Comput; 2023 Aug; 61(8):2091-2113. PubMed ID: 37338737 [TBL] [Abstract][Full Text] [Related]
54. Transfer learning-driven ensemble model for detection of diabetic retinopathy disease. Chaurasia BK; Raj H; Rathour SS; Singh PB Med Biol Eng Comput; 2023 Aug; 61(8):2033-2049. PubMed ID: 37296285 [TBL] [Abstract][Full Text] [Related]
55. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME). Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096 [TBL] [Abstract][Full Text] [Related]
56. Supervised Contrastive Learning with Angular Margin for the Detection and Grading of Diabetic Retinopathy. Zhu D; Ge A; Chen X; Wang Q; Wu J; Liu S Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510133 [TBL] [Abstract][Full Text] [Related]
57. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis. Tang F; Luenam P; Ran AR; Quadeer AA; Raman R; Sen P; Khan R; Giridhar A; Haridas S; Iglicki M; Zur D; Loewenstein A; Negri HP; Szeto S; Lam BKY; Tham CC; Sivaprasad S; Mckay M; Cheung CY Ophthalmol Retina; 2021 Nov; 5(11):1097-1106. PubMed ID: 33540169 [TBL] [Abstract][Full Text] [Related]
58. A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Das D; Biswas SK; Bandyopadhyay S Multimed Tools Appl; 2022; 81(18):25613-25655. PubMed ID: 35342328 [TBL] [Abstract][Full Text] [Related]
59. Identification of Diabetic Retinopathy Using Weighted Fusion Deep Learning Based on Dual-Channel Fundus Scans. Nneji GU; Cai J; Deng J; Monday HN; Hossin MA; Nahar S Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204628 [TBL] [Abstract][Full Text] [Related]
60. Analysis of CT scan images for COVID-19 pneumonia based on a deep ensemble framework with DenseNet, Swin transformer, and RegNet. Peng L; Wang C; Tian G; Liu G; Li G; Lu Y; Yang J; Chen M; Li Z Front Microbiol; 2022; 13():995323. PubMed ID: 36212877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]