These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37588892)

  • 1. Sensitivity of musculoskeletal models to variation in muscle architecture parameters.
    Kramer PA; Feuerriegel EM; Lautzenheiser SG; Sylvester AD
    Evol Hum Sci; 2022; 4():e6. PubMed ID: 37588892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional electrical stimulation of gluteus medius reduces the medial joint reaction force of the knee during level walking.
    Rane L; Bull AM
    Arthritis Res Ther; 2016 Nov; 18(1):255. PubMed ID: 27809923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.
    Sopher RS; Amis AA; Davies DC; Jeffers JR
    J Strain Anal Eng Des; 2017 Jan; 52(1):12-23. PubMed ID: 29805194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of musculoskeletal model parameter values on prediction of accurate knee contact forces during walking.
    Serrancolí G; Kinney AL; Fregly BJ
    Med Eng Phys; 2020 Nov; 85():35-47. PubMed ID: 33081962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical predictions of hip joint and muscle forces during daily activities: A comparison of musculoskeletal models.
    Mathai B; Gupta S
    Proc Inst Mech Eng H; 2019 Jun; 233(6):636-647. PubMed ID: 30922155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of Anterior Cruciate Ligament Dynamics From Subject-Specific Musculoskeletal Models and Dynamic Biplane Radiography.
    Charles JP; Fu FH; Anderst WJ
    J Biomech Eng; 2021 Mar; 143(3):. PubMed ID: 33030199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking.
    Martín-Sosa E; Martínez-Reina J; Mayo J; Ojeda J
    PLoS One; 2019; 14(9):e0222491. PubMed ID: 31553756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Canine Rigid Body Musculoskeletal Computer Model to Evaluate Gait.
    Brown NP; Bertocci GE; States GJR; Levine GJ; Levine JM; Howland DR
    Front Bioeng Biotechnol; 2020; 8():150. PubMed ID: 32219092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of a Hill-based muscle model to perturbations in model parameters.
    Scovil CY; Ronsky JL
    J Biomech; 2006; 39(11):2055-63. PubMed ID: 16084520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.
    Markowitz J; Herr H
    PLoS Comput Biol; 2016 May; 12(5):e1004912. PubMed ID: 27175486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP; Kinney AL; Banks SA; D'Lima DD; Besier TF; Lloyd DG; Fregly BJ
    J Biomech Eng; 2014 Feb; 136(2):021031. PubMed ID: 24402438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromusculoskeletal model calibration accounts for differences in electromechanical delay and maximum isometric muscle force.
    Savage TN; Saxby DJ; Lloyd DG; Pizzolato C
    J Biomech; 2023 Mar; 149():111503. PubMed ID: 36842407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling.
    Lerner ZF; Haight DJ; DeMers MS; Board WJ; Browning RC
    J Appl Biomech; 2014 Apr; 30(2):197-205. PubMed ID: 23878264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters.
    Valero-Cuevas FJ; Johanson ME; Towles JD
    J Biomech; 2003 Jul; 36(7):1019-30. PubMed ID: 12757811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis of the estimated muscle forces during gait with respect to the musculoskeletal model parameters and dynamic simulation techniques.
    Zuk M; Syczewska M; Pezowicz C
    J Biomech Eng; 2018 Jul; ():. PubMed ID: 30098142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of estimated muscle force in forward simulation of normal walking.
    Xiao M; Higginson J
    J Appl Biomech; 2010 May; 26(2):142-9. PubMed ID: 20498485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.