These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37589022)

  • 1. DBLiPro: A Database for Lipids and Proteins in Human Lipid Metabolism.
    Wu Q; Huang Y; Kong X; Jia B; Lu X; Chen Y; Huang Z; Li YY; Dai W
    Phenomics; 2023 Aug; 3(4):350-359. PubMed ID: 37589022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LINT-Web: A Web-Based Lipidomic Data Mining Tool Using Intra-Omic Integrative Correlation Strategy.
    Li F; Song J; Zhang Y; Wang S; Wang J; Lin L; Yang C; Li P; Huang H
    Small Methods; 2021 Sep; 5(9):e2100206. PubMed ID: 34928054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LipidSig: a web-based tool for lipidomic data analysis.
    Lin WJ; Shen PC; Liu HC; Cho YC; Hsu MK; Lin IC; Chen FH; Yang JC; Ma WL; Cheng WC
    Nucleic Acids Res; 2021 Jul; 49(W1):W336-W345. PubMed ID: 34048582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway-based integration of multi-omics data reveals lipidomics alterations validated in an Alzheimer's disease mouse model and risk loci carriers.
    Garcia-Segura ME; Durainayagam BR; Liggi S; Graça G; Jimenez B; Dehghan A; Tzoulaki I; Karaman I; Elliott P; Griffin JL
    J Neurochem; 2023 Jan; 164(1):57-76. PubMed ID: 36326588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Omics Approaches and Radiation on Lipid Metabolism in Toothed Whales.
    Senevirathna JDM; Asakawa S
    Life (Basel); 2021 Apr; 11(4):. PubMed ID: 33923876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LipidHome: a database of theoretical lipids optimized for high throughput mass spectrometry lipidomics.
    Foster JM; Moreno P; Fabregat A; Hermjakob H; Steinbeck C; Apweiler R; Wakelam MJ; Vizcaíno JA
    PLoS One; 2013; 8(5):e61951. PubMed ID: 23667450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicrobesFlux: a web platform for drafting metabolic models from the KEGG database.
    Feng X; Xu Y; Chen Y; Tang YJ
    BMC Syst Biol; 2012 Aug; 6():94. PubMed ID: 22857267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics strategies for the analysis of lipids.
    Wheelock CE; Goto S; Yetukuri L; D'Alexandri FL; Klukas C; Schreiber F; Oresic M
    Methods Mol Biol; 2009; 580():339-68. PubMed ID: 19784609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What can we learn from the platelet lipidome?
    Chicanne G; Darcourt J; Bertrand-Michel J; Garcia C; Ribes A; Payrastre B
    Platelets; 2023 Dec; 34(1):2182180. PubMed ID: 36880158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yersiniomics, a Multi-Omics Interactive Database for
    Lê-Bury P; Druart K; Savin C; Lechat P; Mas Fiol G; Matondo M; Bécavin C; Dussurget O; Pizarro-Cerdá J
    Microbiol Spectr; 2023 Feb; 11(2):e0382622. PubMed ID: 36847572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical lipidomics in understanding of lung cancer: Opportunity and challenge.
    Zhang L; Zhu B; Zeng Y; Shen H; Zhang J; Wang X
    Cancer Lett; 2020 Feb; 470():75-83. PubMed ID: 31655086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A practical data processing workflow for multi-OMICS projects.
    Kohl M; Megger DA; Trippler M; Meckel H; Ahrens M; Bracht T; Weber F; Hoffmann AC; Baba HA; Sitek B; Schlaak JF; Meyer HE; Stephan C; Eisenacher M
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt A):52-62. PubMed ID: 23501674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipidomics and Biomarker Discovery in Kidney Disease.
    Afshinnia F; Rajendiran TM; Wernisch S; Soni T; Jadoon A; Karnovsky A; Michailidis G; Pennathur S
    Semin Nephrol; 2018 Mar; 38(2):127-141. PubMed ID: 29602396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lipidome in nonalcoholic fatty liver disease: actionable targets.
    Pirola CJ; Sookoian S
    J Lipid Res; 2021; 62():100073. PubMed ID: 33845089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RaftProt V2: understanding membrane microdomain function through lipid raft proteomes.
    Mohamed A; Shah AD; Chen D; Hill MM
    Nucleic Acids Res; 2019 Jan; 47(D1):D459-D463. PubMed ID: 30329070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses.
    Nakayasu ES; Nicora CD; Sims AC; Burnum-Johnson KE; Kim YM; Kyle JE; Matzke MM; Shukla AK; Chu RK; Schepmoes AA; Jacobs JM; Baric RS; Webb-Robertson BJ; Smith RD; Metz TO
    mSystems; 2016; 1(3):. PubMed ID: 27822525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of technologies for MS-based proteomics-centric multi-omics.
    Rajczewski AT; Jagtap PD; Griffin TJ
    Expert Rev Proteomics; 2022 Mar; 19(3):165-181. PubMed ID: 35466851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KEGG: Kyoto Encyclopedia of Genes and Genomes.
    Ogata H; Goto S; Sato K; Fujibuchi W; Bono H; Kanehisa M
    Nucleic Acids Res; 1999 Jan; 27(1):29-34. PubMed ID: 9847135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 'ForensOMICS' approach for postmortem interval estimation from human bone by integrating metabolomics, lipidomics, and proteomics.
    Bonicelli A; Mickleburgh HL; Chighine A; Locci E; Wescott DJ; Procopio N
    Elife; 2022 Dec; 11():. PubMed ID: 36583441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the "gene-protein-metabolite" network of coronary heart disease with phlegm and blood stasis syndrome by integrated multi-omics strategy.
    Yang G; Zhou S; He H; Shen Z; Liu Y; Hu J; Wang J
    Front Pharmacol; 2022; 13():1022627. PubMed ID: 36523490
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.