BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37589559)

  • 1. Mitochondrial metabolism and oxidative stress in the tropical cockroach under fluctuating thermal regimes.
    Lubawy J; Chowański SP; Colinet H; Słocińska M
    J Exp Biol; 2023 Sep; 226(17):. PubMed ID: 37589559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana.
    Chowański S; Lubawy J; Paluch-Lubawa E; Spochacz M; Rosiński G; Słocińska M
    PLoS One; 2017; 12(3):e0173100. PubMed ID: 28253309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana.
    Slocinska M; Antos-Krzeminska N; Rosinski G; Jarmuszkiewicz W
    J Bioenerg Biomembr; 2011 Dec; 43(6):717-27. PubMed ID: 21997226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold induced changes in lipid, protein and carbohydrate levels in the tropical insect Gromphadorhina coquereliana.
    Chowanski S; Lubawy J; Spochacz M; Ewelina P; Grzegorz S; Rosinski G; Slocinska M
    Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():57-63. PubMed ID: 25624163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stress causes DNA damage and mortality in a tropical insect.
    Lubawy J; Daburon V; Chowański S; Słocińska M; Colinet H
    J Exp Biol; 2019 Nov; 222(Pt 23):. PubMed ID: 31672731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect.
    Slocinska M; Lubawy J; Jarmuszkiewicz W; Rosinski G
    J Insect Physiol; 2013 Nov; 59(11):1125-32. PubMed ID: 23973818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Gromphadorhina coquereliana hemolymph under cold stress.
    Lubawy J; Słocińska M
    Sci Rep; 2020 Jul; 10(1):12076. PubMed ID: 32694601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Mitochondrial Uncoupling Protein 4 and ATP-Sensitive Potassium Channel Cumulatively Decreases Superoxide Production in Insect Mitochondria.
    Slocińska M; Rosinski G; Jarmuszkiewicz W
    Protein Pept Lett; 2016; 23(1):63-8. PubMed ID: 26548865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria as a target and central hub of energy division during cold stress in insects.
    Lubawy J; Chowański S; Adamski Z; Słocińska M
    Front Zool; 2022 Jan; 19(1):1. PubMed ID: 34991650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between intermediary metabolism,
    Feidantsis K; Giantsis IA; Vratsistas A; Makri S; Pappa AZ; Drosopoulou E; Anestis A; Mavridou E; Exadactylos A; Vafidis D; Michaelidis B
    Am J Physiol Regul Integr Comp Physiol; 2020 Sep; 319(3):R264-R281. PubMed ID: 32609539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance.
    Colinet H; Rinehart JP; Yocum GD; Greenlee KJ
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30037966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of ATP homeostasis during chronic cold stress and recovery in the chill susceptible beetle (Alphitobius diaperinus).
    Colinet H
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Sep; 160(1):63-7. PubMed ID: 21596153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.
    Liu D; Chan SL; de Souza-Pinto NC; Slevin JR; Wersto RP; Zhan M; Mustafa K; de Cabo R; Mattson MP
    Neuromolecular Med; 2006; 8(3):389-414. PubMed ID: 16775390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immediate Transcriptional Response to a Temperature Pulse under a Fluctuating Thermal Regime.
    Melicher D; Torson AS; Anderson TJ; Yocum GD; Rinehart JP; Bowsher JH
    Integr Comp Biol; 2019 Aug; 59(2):320-337. PubMed ID: 31173075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuating thermal regimes prevent chill injury but do not change patterns of oxidative stress in the alfalfa leafcutting bee, Megachile rotundata.
    Torson AS; Yocum GD; Rinehart JP; Nash SA; Bowsher JH
    J Insect Physiol; 2019 Oct; 118():103935. PubMed ID: 31472123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring uncoupling proteins and antioxidant mechanisms under acute cold exposure in brains of fish.
    Tseng YC; Chen RD; Lucassen M; Schmidt MM; Dringen R; Abele D; Hwang PP
    PLoS One; 2011 Mar; 6(3):e18180. PubMed ID: 21464954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.
    Stier A; Massemin S; Criscuolo F
    J Comp Physiol B; 2014 Dec; 184(8):1021-9. PubMed ID: 25183199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta.
    Boardman L; Sørensen JG; Terblanche JS
    J Insect Physiol; 2013 Aug; 59(8):781-94. PubMed ID: 23684741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii).
    Enriquez T; Ruel D; Charrier M; Colinet H
    Insect Sci; 2020 Apr; 27(2):317-335. PubMed ID: 30381878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.