BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 37590157)

  • 1. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood.
    Masum FH; Zaimes GG; Tan ECD; Li S; Dutta A; Ramasamy KK; Hawkins TR
    Environ Sci Technol; 2023 Aug; 57(34):12701-12712. PubMed ID: 37590157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses.
    Tan ECD; Hawkins TR; Lee U; Tao L; Meyer PA; Wang M; Thompson T
    Environ Sci Technol; 2021 Jun; 55(11):7561-7570. PubMed ID: 33998807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Techno-economic Analysis of Sustainable Biofuels for Marine Transportation.
    Li S; Tan ECD; Dutta A; Snowden-Swan LJ; Thorson MR; Ramasamy KK; Bartling AW; Brasington R; Kass MD; Zaimes GG; Hawkins TR
    Environ Sci Technol; 2022 Dec; 56(23):17206-17214. PubMed ID: 36409825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life Cycle Analysis of Fischer-Tropsch Diesel Produced by Tri-Reforming and Fischer-Tropsch Synthesis (TriFTS) of Landfill Gas.
    Poddar TK; Zaimes GG; Kar S; Walker DM; Hawkins TR
    Environ Sci Technol; 2023 Dec; 57(48):19602-19611. PubMed ID: 37955401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost and Life Cycle Emissions of Ethanol Produced with an Oxyfuel Boiler and Carbon Capture and Storage.
    Dees J; Oke K; Goldstein H; McCoy ST; Sanchez DL; Simon AJ; Li W
    Environ Sci Technol; 2023 Apr; 57(13):5391-5403. PubMed ID: 36943504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of an integrated hydrothermal liquefaction, gasification and Fischer-Tropsch synthesis process for converting lignocellulosic forest residues into hydrocarbons.
    Stigsson C; Furusjö E; Börjesson P
    Bioresour Technol; 2022 Jun; 353():126070. PubMed ID: 34624474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous-phase product treatment and monetization options of wet waste hydrothermal liquefaction: Comprehensive techno-economic and life-cycle GHG emission assessment unveiling research opportunities.
    Jiang Y; Ou L; Snowden-Swan L; Cai H; Li S; Ramasamy K; Schmidt A; Wang H; Santosa DM; Olarte MV; Guo M; Thorson MR
    Bioresour Technol; 2024 Apr; 397():130504. PubMed ID: 38423484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach.
    O'Boyle M; Mohamed BA; Li LY
    Chemosphere; 2024 Feb; 350():141074. PubMed ID: 38160959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy use and emissions from marine vessels: a total fuel life cycle approach.
    Winebrake JJ; Corbett JJ; Meyer PE
    J Air Waste Manag Assoc; 2007 Jan; 57(1):102-10. PubMed ID: 17269235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.
    Zaimes GG; Soratana K; Harden CL; Landis AE; Khanna V
    Environ Sci Technol; 2015 Aug; 49(16):10007-18. PubMed ID: 26196154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerosol emissions from a marine diesel engine running on different fuels and effects of exhaust gas cleaning measures.
    Jeong S; Bendl J; Saraji-Bozorgzad M; Käfer U; Etzien U; Schade J; Bauer M; Jakobi G; Orasche J; Fisch K; Cwierz PP; Rüger CP; Czech H; Karg E; Heyen G; Krausnick M; Geissler A; Geipel C; Streibel T; Schnelle-Kreis J; Sklorz M; Schulz-Bull DE; Buchholz B; Adam T; Zimmermann R
    Environ Pollut; 2023 Jan; 316(Pt 1):120526. PubMed ID: 36341831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.
    Meyer PE; Green EH; Corbett JJ; Mas C; Winebrake JJ
    J Air Waste Manag Assoc; 2011 Mar; 61(3):285-94. PubMed ID: 21416755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life Cycle Greenhouse Gas Emissions and Costs of Production of Diesel and Jet Fuel from Municipal Solid Waste.
    Suresh P; Malina R; Staples MD; Lizin S; Olcay H; Blazy D; Pearlson MN; Barrett SRH
    Environ Sci Technol; 2018 Nov; 52(21):12055-12065. PubMed ID: 30289698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated life-cycle greenhouse gas protocol accounting on oil palm trunk and empty fruit bunch biofuel production.
    Chew ZL; Tan EH; Palaniandy SA; Woon KS; Phuang ZX
    Sci Total Environ; 2023 Jan; 856(Pt 1):159007. PubMed ID: 36167122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States.
    Xu H; Ou L; Li Y; Hawkins TR; Wang M
    Environ Sci Technol; 2022 Jun; 56(12):7512-7521. PubMed ID: 35576244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-cycle assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia.
    Nie Y; Bi X
    Biotechnol Biofuels; 2018; 11():23. PubMed ID: 29434666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction.
    Summers HM; Ledbetter RN; McCurdy AT; Morgan MR; Seefeldt LC; Jena U; Hoekman SK; Quinn JC
    Bioresour Technol; 2015 Nov; 196():431-40. PubMed ID: 26276094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass.
    Wong A; Zhang H; Kumar A
    Water Res; 2016 Oct; 102():330-345. PubMed ID: 27379729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable valorization of macroalgae residual biomass, optimization of pyrolysis parameters and life cycle assessment.
    Alam SN; Singh B; Guldhe A; Raghuvanshi S; Sangwan KS
    Sci Total Environ; 2024 Apr; 919():170797. PubMed ID: 38342457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.