These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37590357)

  • 1. Design of stimulus-responsive two-state hinge proteins.
    Praetorius F; Leung PJY; Tessmer MH; Broerman A; Demakis C; Dishman AF; Pillai A; Idris A; Juergens D; Dauparas J; Li X; Levine PM; Lamb M; Ballard RK; Gerben SR; Nguyen H; Kang A; Sankaran B; Bera AK; Volkman BF; Nivala J; Stoll S; Baker D
    Science; 2023 Aug; 381(6659):754-760. PubMed ID: 37590357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-induced conformational changes in a thermophilic ribose-binding protein.
    Cuneo MJ; Beese LS; Hellinga HW
    BMC Struct Biol; 2008 Nov; 8():50. PubMed ID: 19019243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and spectroscopic characterization of P450 BM3 mutants with unprecedented P450 heme iron ligand sets. New heme ligation states influence conformational equilibria in P450 BM3.
    Girvan HM; Seward HE; Toogood HS; Cheesman MR; Leys D; Munro AW
    J Biol Chem; 2007 Jan; 282(1):564-72. PubMed ID: 17077084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance.
    Lai AL; Clerico EM; Blackburn ME; Patel NA; Robinson CV; Borbat PP; Freed JH; Gierasch LM
    J Biol Chem; 2017 May; 292(21):8773-8785. PubMed ID: 28428246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles for designing proteins with cavities formed by curved β sheets.
    Marcos E; Basanta B; Chidyausiku TM; Tang Y; Oberdorfer G; Liu G; Swapna GV; Guan R; Silva DA; Dou J; Pereira JH; Xiao R; Sankaran B; Zwart PH; Montelione GT; Baker D
    Science; 2017 Jan; 355(6321):201-206. PubMed ID: 28082595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.
    Basudhar D; Madrona Y; Kandel S; Lampe JN; Nishida CR; de Montellano PR
    J Biol Chem; 2015 Apr; 290(16):10000-17. PubMed ID: 25670859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered synthetic antibodies as probes to quantify the energetic contributions of ligand binding to conformational changes in proteins.
    Mukherjee S; Griffin DH; Horn JR; Rizk SS; Nocula-Lugowska M; Malmqvist M; Kim SS; Kossiakoff AA
    J Biol Chem; 2018 Feb; 293(8):2815-2828. PubMed ID: 29321208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hinge-bending motion of D-allose-binding protein from Escherichia coli: three open conformations.
    Magnusson U; Chaudhuri BN; Ko J; Park C; Jones TA; Mowbray SL
    J Biol Chem; 2002 Apr; 277(16):14077-84. PubMed ID: 11825912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational remodeling of an enzyme conformational landscape for altered substrate selectivity.
    St-Jacques AD; Rodriguez JM; Eason MG; Foster SM; Khan ST; Damry AM; Goto NK; Thompson MC; Chica RA
    Nat Commun; 2023 Sep; 14(1):6058. PubMed ID: 37770431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering and design of ligand-induced conformational change in proteins.
    Mizoue LS; Chazin WJ
    Curr Opin Struct Biol; 2002 Aug; 12(4):459-63. PubMed ID: 12163068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of sequence duplication to engineer a ligand-triggered, long-distance molecular switch in T4 lysozyme.
    Yousef MS; Baase WA; Matthews BW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(32):11583-6. PubMed ID: 15286283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational analysis of macrocycles: comparing general and specialized methods.
    Olanders G; Alogheli H; Brandt P; Karlén A
    J Comput Aided Mol Des; 2020 Mar; 34(3):231-252. PubMed ID: 31965404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques.
    Ward RJ; Milligan G
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):3-14. PubMed ID: 23590995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling.
    Mchaourab HS; Oh KJ; Fang CJ; Hubbell WL
    Biochemistry; 1997 Jan; 36(2):307-16. PubMed ID: 9003182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the Conformational Landscape of Ligand Binding to Glucose/Galactose-Binding Protein by Paramagnetic NMR and MD Simulations.
    Unione L; Ortega G; Mallagaray A; Corzana F; Pérez-Castells J; Canales A; Jiménez-Barbero J; Millet O
    ACS Chem Biol; 2016 Aug; 11(8):2149-57. PubMed ID: 27219646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of NOESY spectra of interacting systems; two-dimensional transferred NOESY.
    Moseley HN; Curto EV; Krishna NR
    J Magn Reson B; 1995 Sep; 108(3):243-61. PubMed ID: 7670757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants.
    Mou Y; Huang PS; Thomas LM; Mayo SL
    J Mol Biol; 2015 Aug; 427(16):2697-706. PubMed ID: 26101839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor rigidity and ligand mobility in trypsin-ligand complexes.
    Guvench O; Price DJ; Brooks CL
    Proteins; 2005 Feb; 58(2):407-17. PubMed ID: 15578663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for ligand binding to an enzyme by a conformational selection pathway.
    Kovermann M; Grundström C; Sauer-Eriksson AE; Sauer UH; Wolf-Watz M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6298-6303. PubMed ID: 28559350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragmentation-tree density representation for crystallographic modelling of bound ligands.
    Langer GG; Evrard GX; Carolan CG; Lamzin VS
    J Mol Biol; 2012 Jun; 419(3-4):211-22. PubMed ID: 22446381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.