BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37591204)

  • 1. Simplifying complex antibody engineering using machine learning.
    Makowski EK; Chen HT; Tessier PM
    Cell Syst; 2023 Aug; 14(8):667-675. PubMed ID: 37591204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of therapeutic antibody self-association using yeast-display selections and machine learning.
    Makowski EK; Chen H; Lambert M; Bennett EM; Eschmann NS; Zhang Y; Zupancic JM; Desai AA; Smith MD; Lou W; Fernando A; Tully T; Gallo CJ; Lin L; Tessier PM
    MAbs; 2022; 14(1):2146629. PubMed ID: 36433737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features.
    Harmalkar A; Rao R; Richard Xie Y; Honer J; Deisting W; Anlahr J; Hoenig A; Czwikla J; Sienz-Widmann E; Rau D; Rice AJ; Riley TP; Li D; Catterall HB; Tinberg CE; Gray JJ; Wei KY
    MAbs; 2023; 15(1):2163584. PubMed ID: 36683173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective binding to protein antigens by antibodies from antibody libraries designed with enhanced protein recognition propensities.
    Jian JW; Chen HS; Chiu YK; Peng HP; Tung CP; Chen IC; Yu CM; Tsou YL; Kuo WY; Hsu HJ; Yang AS
    MAbs; 2019; 11(2):373-387. PubMed ID: 30526270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space.
    Makowski EK; Kinnunen PC; Huang J; Wu L; Smith MD; Wang T; Desai AA; Streu CN; Zhang Y; Zupancic JM; Schardt JS; Linderman JJ; Tessier PM
    Nat Commun; 2022 Jul; 13(1):3788. PubMed ID: 35778381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries.
    Azevedo Reis Teixeira A; Erasmus MF; D'Angelo S; Naranjo L; Ferrara F; Leal-Lopes C; Durrant O; Galmiche C; Morelli A; Scott-Tucker A; Bradbury ARM
    MAbs; 2021; 13(1):1980942. PubMed ID: 34850665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meta learning addresses noisy and under-labeled data in machine learning-guided antibody engineering.
    Minot M; Reddy ST
    Cell Syst; 2024 Jan; 15(1):4-18.e4. PubMed ID: 38194961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using machine learning to predict the effects and consequences of mutations in proteins.
    Diaz DJ; Kulikova AV; Ellington AD; Wilke CO
    Curr Opin Struct Biol; 2023 Feb; 78():102518. PubMed ID: 36603229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues.
    Wu H; Nie Y; Huse WD; Watkins JD
    J Mol Biol; 1999 Nov; 294(1):151-62. PubMed ID: 10556035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-Based Viscosity Prediction for Rapid Antibody Engineering.
    Estes B; Jain M; Jia L; Whoriskey J; Bennett B; Hsu H
    Biomolecules; 2024 May; 14(6):. PubMed ID: 38927021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-learning-guided directed evolution for protein engineering.
    Yang KK; Wu Z; Arnold FH
    Nat Methods; 2019 Aug; 16(8):687-694. PubMed ID: 31308553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hallucinating structure-conditioned antibody libraries for target-specific binders.
    Mahajan SP; Ruffolo JA; Frick R; Gray JJ
    Front Immunol; 2022; 13():999034. PubMed ID: 36341416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering proteinase K using machine learning and synthetic genes.
    Liao J; Warmuth MK; Govindarajan S; Ness JE; Wang RP; Gustafsson C; Minshull J
    BMC Biotechnol; 2007 Mar; 7():16. PubMed ID: 17386103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-engineered monoclonal antibodies retain full specific binding activity by preserving non-CDR complementarity-modulating residues.
    Studnicka GM; Soares S; Better M; Williams RE; Nadell R; Horwitz AH
    Protein Eng; 1994 Jun; 7(6):805-14. PubMed ID: 7937712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep mutational scanning for therapeutic antibody engineering.
    Hanning KR; Minot M; Warrender AK; Kelton W; Reddy ST
    Trends Pharmacol Sci; 2022 Feb; 43(2):123-135. PubMed ID: 34895944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-assisted enzyme engineering.
    Siedhoff NE; Schwaneberg U; Davari MD
    Methods Enzymol; 2020; 643():281-315. PubMed ID: 32896285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning.
    Makowski EK; Wang T; Zupancic JM; Huang J; Wu L; Schardt JS; De Groot AS; Elkins SL; Martin WD; Tessier PM
    Nat Biomed Eng; 2024 Jan; 8(1):45-56. PubMed ID: 37666923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward aggregation-resistant antibodies by design.
    Lee CC; Perchiacca JM; Tessier PM
    Trends Biotechnol; 2013 Nov; 31(11):612-20. PubMed ID: 23932102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence and machine learning in design of mechanical materials.
    Guo K; Yang Z; Yu CH; Buehler MJ
    Mater Horiz; 2021 Apr; 8(4):1153-1172. PubMed ID: 34821909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions.
    Finlay WJ; Cunningham O; Lambert MA; Darmanin-Sheehan A; Liu X; Fennell BJ; Mahon CM; Cummins E; Wade JM; O'Sullivan CM; Tan XY; Piche N; Pittman DD; Paulsen J; Tchistiakova L; Kodangattil S; Gill D; Hufton SE
    J Mol Biol; 2009 May; 388(3):541-58. PubMed ID: 19285987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.