BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 3759127)

  • 1. C3-independent immune haemolysis: mechanism of membrane attack complex formation.
    Kitamura H; Tsuboi M; Nagaki K
    Immunology; 1986 Sep; 59(1):147-51. PubMed ID: 3759127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the formation of a unique cellular intermediate (EAC14256) from EAC142 and C56.
    Kitamura H; Tsuboi M
    Int Arch Allergy Appl Immunol; 1988; 85(3):322-8. PubMed ID: 3280504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of immune haemolysis by a serum factor found in C3-deficient subjects.
    Kitamura H; Tsuboi M
    Immunology; 1989 Feb; 66(2):264-9. PubMed ID: 2925225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C3-independent immune haemolysis: haemolysis of EAC14oxy2 cells by C5-C9 without participation of C3.
    Kitamura H; Matsumoto M; Nagaki K
    Immunology; 1984 Nov; 53(3):575-82. PubMed ID: 6237987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes by C5b-9 does not involve increased C7 binding or cell-bound C3b.
    Rosenfeld SI; Jenkins DE; Leddy JP
    J Immunol; 1985 Jan; 134(1):506-11. PubMed ID: 3964820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activation of C5 in the fluid phase and in the absence of C3 through the classical pathway of the complement system.
    Kitamura H; Tsuboi M; Nagaki K
    Immunology; 1986 Jul; 58(3):459-65. PubMed ID: 3733147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complement lysis of human erythrocytes. Differeing susceptibility of two types of paroxysmal nocturnal hemoglobinuria cells to C5b-9.
    Packman CH; Rosenfeld SI; Jenkins DE; Thiem PA; Leddy JP
    J Clin Invest; 1979 Aug; 64(2):428-33. PubMed ID: 457861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of an activated complex of guinea-pig complement components, C56, with unsensitized erythrocytes and with erythrocytes carrying C3b molecule.
    Tamura N; Baba AS
    Immunology; 1976 Jul; 31(1):151-8. PubMed ID: 1027719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the number of lytic sites in biconcave and spheroid erythrocyte ghosts after complement lysis.
    Bauer J; Podack ER; Valet G
    J Immunol; 1979 May; 122(5):2032-6. PubMed ID: 448115
    [No Abstract]   [Full Text] [Related]  

  • 10. Lytic activity of C5-9 complexes for erythrocytes from the species other than sheep: C9 rather than C8-dependent variation in lytic activity.
    Yamamoto KI
    J Immunol; 1977 Oct; 119(4):1482-5. PubMed ID: 894048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C56 formation in the reaction mixture of isolated complement components through the classical complement pathway.
    Kitamura H; Tsuboi M; Nagaki K
    Int Arch Allergy Appl Immunol; 1985; 78(1):101-7. PubMed ID: 4030125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the fifth and sixth component of the complement system: similarities between C5b6 and C(56)a with respect to lytic enhancement by cell-bound C3b or A2C, and species preferences of target cell.
    Hänsch GM; Hammer CH; Mayer MM; Shin ML
    J Immunol; 1981 Sep; 127(3):999-1002. PubMed ID: 6911149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanate as an inactivator of complement proteins.
    Schultz DR; Arnold PI
    J Immunol; 1975 Dec; 115(6):1558-65. PubMed ID: 1184967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complement lysis of human erythrocytes. II. A unique interaction of human C8 and C9 with paroxysmal nocturnal hemoglobinuria erythrocytes.
    Packman CH; Rosenfeld SI; Jenkins DE; Leddy JP
    J Immunol; 1980 Jun; 124(6):2818-23. PubMed ID: 7189536
    [No Abstract]   [Full Text] [Related]  

  • 15. Trypsin-activated complex of human factor B with cobra venom factor (CVF), cleaving C3 and C5 and generating a lytic factor for unsensitized guinea pig erythrocytes. I. Generation of the activated complex.
    Miyama A; Kato T; Horai S; Yokoo J; Kashiba S
    Biken J; 1975 Dec; 18(4):193-204. PubMed ID: 1218074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of complement with the red-cell membrane.
    Rosse WF
    Semin Hematol; 1979 Apr; 16(2):128-39. PubMed ID: 384519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the inhibition of C56-initiated lysis (reactive lysis). IV. Antagonism of the inhibitory activity c567-INH by poly-L-lysine.
    McLeod B; Baker P; Behrends C; Gewurz H
    Immunology; 1975 Feb; 28(2):379-90. PubMed ID: 47309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes. Studies on C9 binding and incorporation into high molecular weight complexes.
    Rosenfeld SI; Jenkins DE; Leddy JP
    J Exp Med; 1986 Oct; 164(4):981-97. PubMed ID: 3760783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the mechanism of bacterial resistance to complement-mediated killing. VI. IgG increases the bactericidal efficiency of C5b-9 for E. coli 0111B4 by acting at a step before C5 cleavage.
    Joiner KA; Goldman RC; Hammer CH; Leive L; Frank MM
    J Immunol; 1983 Nov; 131(5):2570-5. PubMed ID: 6355297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of C56-initiated lysis by cell-bound C3 fragments: evidence for a mechanism independent of the prior binding of C56 to C3b.
    Yamamoto KI; Lint TF; Gewurz H
    J Immunol; 1977 Oct; 119(4):1346-50. PubMed ID: 894040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.