These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37591396)

  • 1. A new perspective on predicting the reaction rate constants of hydrated electrons for organic contaminants: Exploring molecular structure characterization methods and ambient conditions.
    Zhu T; Li S; Li L; Tao C
    Sci Total Environ; 2023 Dec; 904():166316. PubMed ID: 37591396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of machine learning and deep learning methods for hydrated electron rate constant prediction.
    Zheng S; Guo W; Li C; Sun Y; Zhao Q; Lu H; Si Q; Wang H
    Environ Res; 2023 Aug; 231(Pt 1):115996. PubMed ID: 37105290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating molecular descriptors for enhanced prediction: Shedding light on the potential of pH to model hydrated electron reaction rates for organic compounds.
    Li Y; Tao C; Fu D; Jafvert CT; Zhu T
    Chemosphere; 2024 Feb; 349():140984. PubMed ID: 38122944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways.
    Li C; Zheng S; Li T; Chen J; Zhou J; Su L; Zhang YN; Crittenden JC; Zhu S; Zhao Y
    Water Res; 2019 Mar; 151():468-477. PubMed ID: 30640160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for predicting halogen radical reactivity toward aqueous organic chemicals.
    Liang Y; Huangfu X; Huang R; Han Z; Wu S; Wang J; Long X; Ma J; He Q
    J Hazard Mater; 2024 Jul; 472():134501. PubMed ID: 38735182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning approaches to predict the apparent rate constants for aqueous organic compounds by ferrate.
    Zheng SS; Guo WQ; Lu H; Si QS; Liu BH; Wang HZ; Zhao Q; Jia WR; Yu TP
    J Environ Manage; 2023 Mar; 329():116904. PubMed ID: 36528943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "
    Sanches-Neto FO; Dias-Silva JR; Keng Queiroz Junior LH; Carvalho-Silva VH
    Environ Sci Technol; 2021 Sep; 55(18):12437-12448. PubMed ID: 34473479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Count-Based Morgan Fingerprint: A More Efficient and Interpretable Molecular Representation in Developing Machine Learning-Based Predictive Regression Models for Water Contaminants' Activities and Properties.
    Zhong S; Guan X
    Environ Sci Technol; 2023 Nov; 57(46):18193-18202. PubMed ID: 37406199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting reactivity dynamics of halogen species and trace organic contaminants using machine learning models.
    Zhu J; Huang Y; Yi Q; Bu L; Zhou S; Shi Z
    Chemosphere; 2024 Jan; 346():140659. PubMed ID: 37949193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Carbonate Speciation on Hydrated Electron Treatment Processes.
    Amador CK; Cavalli H; Tenorio R; Tetu H; Higgins CP; Vyas S; Strathmann TJ
    Environ Sci Technol; 2023 May; 57(20):7849-7857. PubMed ID: 37170785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Hydrated Electron Transformation Kinetics in UV-Advanced Reduction Processes Using the
    Fennell BD; Odorisio A; McKay G
    Environ Sci Technol; 2022 Jul; 56(14):10329-10338. PubMed ID: 35791772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep neural network combined with molecular fingerprints (DNN-MF) to develop predictive models for hydroxyl radical rate constants of water contaminants.
    Zhong S; Hu J; Fan X; Yu X; Zhang H
    J Hazard Mater; 2020 Feb; 383():121141. PubMed ID: 31610411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo method based QSPR model for prediction of reaction rate constants of hydrated electrons with organic contaminants.
    Ahmadi S; Lotfi S; Kumar P
    SAR QSAR Environ Res; 2020 Dec; 31(12):935-950. PubMed ID: 33179988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the hydrated electron generation from UV/aniline: Mechanism and quantum efficiency.
    Yu X; Tan L; Yu Y; Xia Y; Guan Z; Gu J; Wang J; Chen H; Jiang F
    Chemosphere; 2022 Jan; 287(Pt 3):132292. PubMed ID: 34562711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-short chain fluorocarboxylates exhibit wide ranging reactivity with hydrated electrons.
    Amador CK; Van Hoomissen DJ; Liu J; Strathmann TJ; Vyas S
    Chemosphere; 2023 Jan; 311(Pt 1):136918. PubMed ID: 36306966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and efficiency of contaminant reduction by hydrated electron in the sulfite/iodide/UV process.
    Yu K; Li X; Chen L; Fang J; Chen H; Li Q; Chi N; Ma J
    Water Res; 2018 Feb; 129():357-364. PubMed ID: 29169109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel interpretable machine learning model approach for the prediction of TiO
    Schossler RT; Ojo S; Jiang Z; Hu J; Yu X
    Sci Rep; 2024 Jun; 14(1):13070. PubMed ID: 38844551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.
    Gupta S; Basant N
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):24936-24946. PubMed ID: 28918607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of degradability of micropollutants by sonolysis in water with QSPR - a case study on phenol derivates.
    Glienke J; Schillberg W; Stelter M; Braeutigam P
    Ultrason Sonochem; 2022 Jan; 82():105867. PubMed ID: 34920352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving predictions and understanding of primary and ultimate biodegradation rates with machine learning models.
    Jiang S; Liang Y; Shi S; Wu C; Shi Z
    Sci Total Environ; 2023 Dec; 904():166623. PubMed ID: 37652371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.