These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37591489)

  • 1. Salt tolerance in Brassicaceae crops: physiological responses and molecular mechanisms.
    Wang T; Yang X; Fan Z; Wang Y
    Funct Plant Biol; 2023 Oct; 50(10):753-764. PubMed ID: 37591489
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Wang T; Yang X; Fan Z; Wang Y
    Funct Plant Biol; 2023 Dec; 50(12):1130. PubMed ID: 38051337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress.
    Lv X; Chen S; Wang Y
    Front Plant Sci; 2019; 10():1431. PubMed ID: 31781145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Approaches to Uncover Salt Stress Response Mechanisms in Crops.
    Kausar R; Komatsu S
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms.
    Abdul Aziz M; Masmoudi K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review.
    Chourasia KN; More SJ; Kumar A; Kumar D; Singh B; Bhardwaj V; Kumar A; Das SK; Singh RK; Zinta G; Tiwari RK; Lal MK
    Planta; 2022 Feb; 255(3):68. PubMed ID: 35169941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress.
    Xu Y; Lu JH; Zhang JD; Liu DK; Wang Y; Niu QD; Huang DD
    BMC Plant Biol; 2021 Dec; 21(1):599. PubMed ID: 34915868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet.
    Geng G; Lv C; Stevanato P; Li R; Liu H; Yu L; Wang Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P; Gu M
    BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.
    Oshone R; Ngom M; Chu F; Mansour S; Sy MO; Champion A; Tisa LS
    BMC Genomics; 2017 Aug; 18(1):633. PubMed ID: 28821232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Transcriptome and Proteome Analysis of Salt-Tolerant and Salt-Sensitive Sweet Potato and Overexpression of
    Meng X; Liu S; Dong T; Xu T; Ma D; Pan S; Li Z; Zhu M
    Front Plant Sci; 2020; 11():572540. PubMed ID: 32973858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current advances in the molecular regulation of abiotic stress tolerance in sorghum
    Tu M; Du C; Yu B; Wang G; Deng Y; Wang Y; Chen M; Chang J; Yang G; He G; Xiong Z; Li Y
    Front Plant Sci; 2023; 14():1147328. PubMed ID: 37235010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes.
    Peng Z; He S; Gong W; Sun J; Pan Z; Xu F; Lu Y; Du X
    BMC Genomics; 2014 Sep; 15(1):760. PubMed ID: 25189468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic Profiling Identifies Candidate Genes Involved in the Salt Tolerance of the Xerophyte
    Cui YN; Wang FZ; Yang CH; Yuan JZ; Guo H; Zhang JL; Wang SM; Ma Q
    Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31842449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis.
    Wang X; Wang T; Yu P; Li Y; Lv X
    Front Plant Sci; 2024; 15():1343154. PubMed ID: 38384762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (
    Wan H; Qian J; Zhang H; Lu H; Li O; Li R; Yu Y; Wen J; Zhao L; Yi B; Fu T; Shen J
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects, tolerance mechanisms and management of salt stress in grain legumes.
    Farooq M; Gogoi N; Hussain M; Barthakur S; Paul S; Bharadwaj N; Migdadi HM; Alghamdi SS; Siddique KHM
    Plant Physiol Biochem; 2017 Sep; 118():199-217. PubMed ID: 28648997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications.
    Chen M; Yang Z; Liu J; Zhu T; Wei X; Fan H; Wang B
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined full-length transcriptomic and metabolomic analysis reveals the regulatory mechanisms of adaptation to salt stress in asparagus.
    Zhang X; Han C; Liang Y; Yang Y; Liu Y; Cao Y
    Front Plant Sci; 2022; 13():1050840. PubMed ID: 36388563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance.
    Wang Y; Stevanato P; Lv C; Li R; Geng G
    J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.