BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37591832)

  • 41. Genome Engineering Human ESCs or iPSCs with Cytosine and Adenine Base Editors.
    Pavani G; Klein JG; French DL; Gadue P
    Methods Mol Biol; 2022; 2520():321-333. PubMed ID: 35579838
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-nucleotide editing for
    Molla KA; Shih J; Yang Y
    aBIOTECH; 2020 Apr; 1(2):106-118. PubMed ID: 36304716
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Boosting targeted genome editing using the hei-tag.
    Thumberger T; Tavhelidse-Suck T; Gutierrez-Triana JA; Cornean A; Medert R; Welz B; Freichel M; Wittbrodt J
    Elife; 2022 Mar; 11():. PubMed ID: 35333175
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing.
    McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z
    Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional Analysis of Variants in BRCA1 Using CRISPR Base Editors.
    See JE; Kim Y
    Methods Mol Biol; 2023; 2606():73-85. PubMed ID: 36592309
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of cytosine base editors and development of the BEable-GPS database for targeting pathogenic SNVs.
    Wang Y; Gao R; Wu J; Xiong YC; Wei J; Zhang S; Yang B; Chen J; Yang L
    Genome Biol; 2019 Oct; 20(1):218. PubMed ID: 31647030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A systematic review of computational methods for designing efficient guides for CRISPR DNA base editor systems.
    Giner G; Ikram S; Herold MJ; Papenfuss AT
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects.
    Liang M; Sui T; Liu Z; Chen M; Liu H; Shan H; Lai L; Li Z
    Cells; 2020 Jul; 9(8):. PubMed ID: 32727031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Permanent Inactivation of HBV Genomes by CRISPR/Cas9-Mediated Non-cleavage Base Editing.
    Yang YC; Chen YH; Kao JH; Ching C; Liu IJ; Wang CC; Tsai CH; Wu FY; Liu CJ; Chen PJ; Chen DS; Yang HC
    Mol Ther Nucleic Acids; 2020 Jun; 20():480-490. PubMed ID: 32278307
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unbiased whole genome detection of ultrarare off-target mutations in genome-edited cell populations by HiFi sequencing.
    Miranda JA; Fenner K; McKinzie PB; Dobrovolsky VN; Revollo JR
    Environ Mol Mutagen; 2023 Aug; 64(7):374-381. PubMed ID: 37488781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs.
    Kawamata M; Suzuki HI; Kimura R; Suzuki A
    Nat Biomed Eng; 2023 May; 7(5):672-691. PubMed ID: 37037965
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing.
    Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H
    Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Strategies to Overcome Present CRISPR/Cas9 Limitations in Apple and Pear: Efficient Dechimerization and Base Editing.
    Malabarba J; Chevreau E; Dousset N; Veillet F; Moizan J; Vergne E
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PAM-less plant genome editing using a CRISPR-SpRY toolbox.
    Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y
    Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual guide RNA-mediated concurrent C&G-to-T&A and A&T-to-G&C conversions using CRISPR base editors.
    Zhao Y; Li M; Liu J; Xue X; Zhong J; Lin J; Ye B; Chen J; Qiao Y
    Comput Struct Biotechnol J; 2023; 21():856-868. PubMed ID: 36698964
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of Base Editing Efficiencies and Outcomes Using DeepABE and DeepCBE.
    Park J; Kim HK
    Methods Mol Biol; 2023; 2606():23-32. PubMed ID: 36592305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.