These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37591842)

  • 1. A deep learning method for replicate-based analysis of chromosome conformation contacts using Siamese neural networks.
    Al-Jibury E; King JWD; Guo Y; Lenhard B; Fisher AG; Merkenschlager M; Rueckert D
    Nat Commun; 2023 Aug; 14(1):5007. PubMed ID: 37591842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles of Chromosome Architecture Revealed by Hi-C.
    Eagen KP
    Trends Biochem Sci; 2018 Jun; 43(6):469-478. PubMed ID: 29685368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GenomeDISCO: a concordance score for chromosome conformation capture experiments using random walks on contact map graphs.
    Ursu O; Boley N; Taranova M; Wang YXR; Yardimci GG; Stafford Noble W; Kundaje A
    Bioinformatics; 2018 Aug; 34(16):2701-2707. PubMed ID: 29554289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comprehensive Evaluation of Generalizability of Deep Learning-Based Hi-C Resolution Improvement Methods.
    Murtaza G; Jain A; Hughes M; Wagner J; Singh R
    Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38254945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders.
    Uusküla-Reimand L; Hou H; Samavarchi-Tehrani P; Rudan MV; Liang M; Medina-Rivera A; Mohammed H; Schmidt D; Schwalie P; Young EJ; Reimand J; Hadjur S; Gingras AC; Wilson MD
    Genome Biol; 2016 Aug; 17(1):182. PubMed ID: 27582050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation.
    Dsouza KB; Maslova A; Al-Jibury E; Merkenschlager M; Bhargava VK; Libbrecht MW
    Nat Commun; 2022 Jun; 13(1):3704. PubMed ID: 35764630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments.
    Alinejad-Rokny H; Ghavami Modegh R; Rabiee HR; Ramezani Sarbandi E; Rezaie N; Tam KT; Forrest ARR
    PLoS Comput Biol; 2022 Jun; 18(6):e1010241. PubMed ID: 35749574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeCOOC Deconvoluted Hi-C Map Characterizes the Chromatin Architecture of Cells in Physiologically Distinctive Tissues.
    Wang J; Lu L; Zheng S; Wang D; Jin L; Zhang Q; Li M; Zhang Z
    Adv Sci (Weinh); 2023 Sep; 10(27):e2301058. PubMed ID: 37515382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving comparative analyses of Hi-C data via contrastive self-supervised learning.
    Li H; He X; Kurowski L; Zhang R; Zhao D; Zeng J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.
    Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe.
    Mizuguchi T; Fudenberg G; Mehta S; Belton JM; Taneja N; Folco HD; FitzGerald P; Dekker J; Mirny L; Barrowman J; Grewal SIS
    Nature; 2014 Dec; 516(7531):432-435. PubMed ID: 25307058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian Micro-C-XL.
    Krietenstein N; Rando OJ
    Methods Mol Biol; 2022; 2458():321-332. PubMed ID: 35103975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.
    Attou A; Zülske T; Wedemann G
    Biophys J; 2022 Dec; 121(24):4788-4799. PubMed ID: 36325618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.