These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37591920)
1. Structure-based modeling of critical micelle concentration (CMC) of anionic surfactants in brine using intelligent methods. Abooali D; Soleimani R Sci Rep; 2023 Aug; 13(1):13361. PubMed ID: 37591920 [TBL] [Abstract][Full Text] [Related]
2. CMC prediction for ionic surfactants in pure water and aqueous salt solutions based solely on tabulated molecular parameters. Karakashev SI; Smoukov SK J Colloid Interface Sci; 2017 Sep; 501():142-149. PubMed ID: 28448834 [TBL] [Abstract][Full Text] [Related]
3. QSPR study of critical micelle concentration of anionic surfactants using computational molecular descriptors. Katritzky AR; Pacureanu L; Dobchev D; Karelson M J Chem Inf Model; 2007; 47(3):782-93. PubMed ID: 17497845 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258 [TBL] [Abstract][Full Text] [Related]
5. QSPR for the prediction of critical micelle concentration of different classes of surfactants using machine learning algorithms. Boukelkal N; Rahal S; Rebhi R; Hamadache M J Mol Graph Model; 2024 Jun; 129():108757. PubMed ID: 38503002 [TBL] [Abstract][Full Text] [Related]
6. Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Perinelli DR; Cespi M; Lorusso N; Palmieri GF; Bonacucina G; Blasi P Langmuir; 2020 Jun; 36(21):5745-5753. PubMed ID: 32370512 [TBL] [Abstract][Full Text] [Related]
7. Rapid determination of surfactant critical micelle concentration in aqueous solutions using fiber-optic refractive index sensing. Tan CH; Huang ZJ; Huang XG Anal Biochem; 2010 Jun; 401(1):144-7. PubMed ID: 20175982 [TBL] [Abstract][Full Text] [Related]
8. Complementary use of simulations and molecular-thermodynamic theory to model micellization. Stephenson BC; Beers K; Blankschtein D Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068 [TBL] [Abstract][Full Text] [Related]
9. The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: electrostatic repulsion or the effect of ionic strength? Eftekhari M; Schwarzenberger K; Javadi A; Eckert K Phys Chem Chem Phys; 2020 Jan; 22(4):2238-2248. PubMed ID: 31915756 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Critical Micelle Concentration Using a Quantitative Structure-Property Relationship Approach. Huibers PDT; Lobanov VS; Katritzky AR; Shah DO; Karelson M J Colloid Interface Sci; 1997 Mar; 187(1):113-20. PubMed ID: 9245320 [TBL] [Abstract][Full Text] [Related]
11. Predicting the Temperature Dependence of Surfactant CMCs Using Graph Neural Networks. Brozos C; Rittig JG; Bhattacharya S; Akanny E; Kohlmann C; Mitsos A J Chem Theory Comput; 2024 Jul; 20(13):5695-5707. PubMed ID: 38920084 [TBL] [Abstract][Full Text] [Related]
12. Rapid determination of surfactant critical micelle concentrations using pressure-driven flow with capillary electrophoresis instrumentation. Stanley FE; Warner AM; Schneiderman E; Stalcup AM J Chromatogr A; 2009 Nov; 1216(47):8431-4. PubMed ID: 19836753 [TBL] [Abstract][Full Text] [Related]
13. Effects of linear alkylbenzene sulfonate on the sorption of Brij 30 and Brij 35 onto aquifer sand. Tripathi S; Brown DG Environ Sci Technol; 2008 Mar; 42(5):1492-8. PubMed ID: 18441793 [TBL] [Abstract][Full Text] [Related]
14. Mixed micelle formation among anionic gemini surfactant (212) and its monomer (SDMA) with conventional surfactants (C12E5 and C12E8) in brine solution at pH 11. Ghosh S; Chakraborty T J Phys Chem B; 2007 Jul; 111(28):8080-8. PubMed ID: 17583935 [TBL] [Abstract][Full Text] [Related]
15. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Zhang M; He F; Zhao D; Hao X Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362 [TBL] [Abstract][Full Text] [Related]
16. Micellar partitioning and its effects on Henry's law constants of chlorinated solvents in anionic and nonionic surfactant solutions. Zhang C; Zheng G; Nichols CM Environ Sci Technol; 2006 Jan; 40(1):208-14. PubMed ID: 16433353 [TBL] [Abstract][Full Text] [Related]
17. Surfactant aggregate size distributions above and below the critical micelle concentration. Ben-Amotz D; Mendes de Oliveira D J Chem Phys; 2021 Dec; 155(22):224902. PubMed ID: 34911306 [TBL] [Abstract][Full Text] [Related]
18. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers. Haftka JJ; Scherpenisse P; Oetter G; Hodges G; Eadsforth CV; Kotthoff M; Hermens JL Environ Toxicol Chem; 2016 Sep; 35(9):2173-81. PubMed ID: 26873883 [TBL] [Abstract][Full Text] [Related]
19. Predicting Critical Micelle Concentrations for Surfactants Using Graph Convolutional Neural Networks. Qin S; Jin T; Van Lehn RC; Zavala VM J Phys Chem B; 2021 Sep; 125(37):10610-10620. PubMed ID: 34498887 [TBL] [Abstract][Full Text] [Related]
20. A Review on Interactions between Amino Acids and Surfactants as Well as Their Impact on Corrosion Inhibition. Singh Raman AP; Muhammad AA; Singh H; Singh T; Mkhize Z; Jain P; Singh SK; Bahadur I; Singh P ACS Omega; 2022 Dec; 7(51):47471-47489. PubMed ID: 36591120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]