These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37591969)
1. High-accuracy morphological identification of bone marrow cells using deep learning-based Morphogo system. Lv Z; Cao X; Jin X; Xu S; Deng H Sci Rep; 2023 Aug; 13(1):13364. PubMed ID: 37591969 [TBL] [Abstract][Full Text] [Related]
2. Detection of Metastatic Tumor Cells in the Bone Marrow Aspirate Smears by Artificial Intelligence (AI)-Based Chen P; Chen Xu R; Chen N; Zhang L; Zhang L; Zhu J; Pan B; Wang B; Guo W Front Oncol; 2021; 11():742395. PubMed ID: 34646779 [TBL] [Abstract][Full Text] [Related]
3. Detection of circulating plasma cells in peripheral blood using deep learning-based morphological analysis. Chen P; Zhang L; Cao X; Jin X; Chen N; Zhang L; Zhu J; Pan B; Wang B; Guo W Cancer; 2024 May; 130(10):1884-1893. PubMed ID: 38236717 [TBL] [Abstract][Full Text] [Related]
4. Morphogo: An Automatic Bone Marrow Cell Classification System on Digital Images Analyzed by Artificial Intelligence. Fu X; Fu M; Li Q; Peng X; Lu J; Fang F; Chen M Acta Cytol; 2020; 64(6):588-596. PubMed ID: 32721953 [TBL] [Abstract][Full Text] [Related]
5. The Application of Morphogo in the Detection of Megakaryocytes from Bone Marrow Digital Images with Convolutional Neural Networks. Wang X; Wang Y; Qi C; Qiao S; Yang S; Wang R; Jin H; Zhang J Technol Cancer Res Treat; 2023; 22():15330338221150069. PubMed ID: 36700246 [TBL] [Abstract][Full Text] [Related]
6. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow. Tang G; Fu X; Wang Z; Chen M Acta Cytol; 2021; 65(4):354-357. PubMed ID: 34350848 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of deep learning training strategies for the classification of bone marrow cell images. Glüge S; Balabanov S; Koelzer VH; Ott T Comput Methods Programs Biomed; 2024 Jan; 243():107924. PubMed ID: 37979517 [TBL] [Abstract][Full Text] [Related]
9. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan). Barrera K; Merino A; Molina A; Rodellar J Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666 [TBL] [Abstract][Full Text] [Related]
10. Developing a Machine Learning Algorithm for Identifying Abnormal Urothelial Cells: A Feasibility Study. Zhang Z; Fu X; Liu J; Huang Z; Liu N; Fang F; Rao J Acta Cytol; 2021; 65(4):335-341. PubMed ID: 33022673 [TBL] [Abstract][Full Text] [Related]
11. Deep learning for bone marrow cell detection and classification on whole-slide images. Wang CW; Huang SC; Lee YC; Shen YJ; Meng SI; Gaol JL Med Image Anal; 2022 Jan; 75():102270. PubMed ID: 34710655 [TBL] [Abstract][Full Text] [Related]
12. White blood cells detection and classification based on regional convolutional neural networks. Kutlu H; Avci E; Özyurt F Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248 [TBL] [Abstract][Full Text] [Related]
13. White blood cells identification system based on convolutional deep neural learning networks. Shahin AI; Guo Y; Amin KM; Sharawi AA Comput Methods Programs Biomed; 2019 Jan; 168():69-80. PubMed ID: 29173802 [TBL] [Abstract][Full Text] [Related]
14. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network. Hazra D; Byun YC; Kim WJ Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483 [TBL] [Abstract][Full Text] [Related]
15. The role of peripheral blood, bone marrow aspirate and especially bone marrow trephine biopsy in distinguishing atypical chronic myeloid leukemia from chronic granulocytic leukemia and chronic myelomonocytic leukemia. Xubo G; Xingguo L; Xianguo W; Rongzhen X; Xibin X; Lin W; Lei Z; Xiaohong Z; Genbo X; Xiaoying Z Eur J Haematol; 2009 Oct; 83(4):292-301. PubMed ID: 19500135 [TBL] [Abstract][Full Text] [Related]
16. Automated classification of histopathology images using transfer learning. Talo M Artif Intell Med; 2019 Nov; 101():101743. PubMed ID: 31813483 [TBL] [Abstract][Full Text] [Related]
17. Diagnosing acute promyelocytic leukemia by using convolutional neural network. Ouyang N; Wang W; Ma L; Wang Y; Chen Q; Yang S; Xie J; Su S; Cheng Y; Cheng Q; Zheng L; Yuan Y Clin Chim Acta; 2021 Jan; 512():1-6. PubMed ID: 33159948 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligence-assisted diagnosis of hematologic diseases based on bone marrow smears using deep neural networks. Wang W; Luo M; Guo P; Wei Y; Tan Y; Shi H Comput Methods Programs Biomed; 2023 Apr; 231():107343. PubMed ID: 36821974 [TBL] [Abstract][Full Text] [Related]
19. Assessment of dysplasia in bone marrow smear with convolutional neural network. Mori J; Kaji S; Kawai H; Kida S; Tsubokura M; Fukatsu M; Harada K; Noji H; Ikezoe T; Maeda T; Matsuda A Sci Rep; 2020 Sep; 10(1):14734. PubMed ID: 32895431 [TBL] [Abstract][Full Text] [Related]
20. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Matek C; Krappe S; Münzenmayer C; Haferlach T; Marr C Blood; 2021 Nov; 138(20):1917-1927. PubMed ID: 34792573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]