BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37591969)

  • 1. High-accuracy morphological identification of bone marrow cells using deep learning-based Morphogo system.
    Lv Z; Cao X; Jin X; Xu S; Deng H
    Sci Rep; 2023 Aug; 13(1):13364. PubMed ID: 37591969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Metastatic Tumor Cells in the Bone Marrow Aspirate Smears by Artificial Intelligence (AI)-Based
    Chen P; Chen Xu R; Chen N; Zhang L; Zhang L; Zhu J; Pan B; Wang B; Guo W
    Front Oncol; 2021; 11():742395. PubMed ID: 34646779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of circulating plasma cells in peripheral blood using deep learning-based morphological analysis.
    Chen P; Zhang L; Cao X; Jin X; Chen N; Zhang L; Zhu J; Pan B; Wang B; Guo W
    Cancer; 2024 May; 130(10):1884-1893. PubMed ID: 38236717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphogo: An Automatic Bone Marrow Cell Classification System on Digital Images Analyzed by Artificial Intelligence.
    Fu X; Fu M; Li Q; Peng X; Lu J; Fang F; Chen M
    Acta Cytol; 2020; 64(6):588-596. PubMed ID: 32721953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Application of Morphogo in the Detection of Megakaryocytes from Bone Marrow Digital Images with Convolutional Neural Networks.
    Wang X; Wang Y; Qi C; Qiao S; Yang S; Wang R; Jin H; Zhang J
    Technol Cancer Res Treat; 2023; 22():15330338221150069. PubMed ID: 36700246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow.
    Tang G; Fu X; Wang Z; Chen M
    Acta Cytol; 2021; 65(4):354-357. PubMed ID: 34350848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of peripheral blood cell images using convolutional neural networks.
    Acevedo A; Alférez S; Merino A; Puigví L; Rodellar J
    Comput Methods Programs Biomed; 2019 Oct; 180():105020. PubMed ID: 31425939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of deep learning training strategies for the classification of bone marrow cell images.
    Glüge S; Balabanov S; Koelzer VH; Ott T
    Comput Methods Programs Biomed; 2024 Jan; 243():107924. PubMed ID: 37979517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).
    Barrera K; Merino A; Molina A; Rodellar J
    Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing a Machine Learning Algorithm for Identifying Abnormal Urothelial Cells: A Feasibility Study.
    Zhang Z; Fu X; Liu J; Huang Z; Liu N; Fang F; Rao J
    Acta Cytol; 2021; 65(4):335-341. PubMed ID: 33022673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning for bone marrow cell detection and classification on whole-slide images.
    Wang CW; Huang SC; Lee YC; Shen YJ; Meng SI; Gaol JL
    Med Image Anal; 2022 Jan; 75():102270. PubMed ID: 34710655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. White blood cells identification system based on convolutional deep neural learning networks.
    Shahin AI; Guo Y; Amin KM; Sharawi AA
    Comput Methods Programs Biomed; 2019 Jan; 168():69-80. PubMed ID: 29173802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of peripheral blood, bone marrow aspirate and especially bone marrow trephine biopsy in distinguishing atypical chronic myeloid leukemia from chronic granulocytic leukemia and chronic myelomonocytic leukemia.
    Xubo G; Xingguo L; Xianguo W; Rongzhen X; Xibin X; Lin W; Lei Z; Xiaohong Z; Genbo X; Xiaoying Z
    Eur J Haematol; 2009 Oct; 83(4):292-301. PubMed ID: 19500135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated classification of histopathology images using transfer learning.
    Talo M
    Artif Intell Med; 2019 Nov; 101():101743. PubMed ID: 31813483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnosing acute promyelocytic leukemia by using convolutional neural network.
    Ouyang N; Wang W; Ma L; Wang Y; Chen Q; Yang S; Xie J; Su S; Cheng Y; Cheng Q; Zheng L; Yuan Y
    Clin Chim Acta; 2021 Jan; 512():1-6. PubMed ID: 33159948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence-assisted diagnosis of hematologic diseases based on bone marrow smears using deep neural networks.
    Wang W; Luo M; Guo P; Wei Y; Tan Y; Shi H
    Comput Methods Programs Biomed; 2023 Apr; 231():107343. PubMed ID: 36821974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of dysplasia in bone marrow smear with convolutional neural network.
    Mori J; Kaji S; Kawai H; Kida S; Tsubokura M; Fukatsu M; Harada K; Noji H; Ikezoe T; Maeda T; Matsuda A
    Sci Rep; 2020 Sep; 10(1):14734. PubMed ID: 32895431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set.
    Matek C; Krappe S; Münzenmayer C; Haferlach T; Marr C
    Blood; 2021 Nov; 138(20):1917-1927. PubMed ID: 34792573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.