These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37592781)
1. A Novel Nucleic Acid Sensing-related Genes Signature for Predicting Immunotherapy Efficacy and Prognosis of Lung Adenocarcinoma. Peng X; Wu H; Zhang B; Xu C; Lang J Curr Cancer Drug Targets; 2024; 24(4):425-444. PubMed ID: 37592781 [TBL] [Abstract][Full Text] [Related]
2. Development of m6A/m5C/m1A regulated lncRNA signature for prognostic prediction, personalized immune intervention and drug selection in LUAD. Ma C; Gu Z; Yang Y J Cell Mol Med; 2024 Apr; 28(8):e18282. PubMed ID: 38647237 [TBL] [Abstract][Full Text] [Related]
3. Establishment of nucleic acid sensing pathways-based model in predicting response to immunotherapy and targeted drug in hepatitis virus-related hepatocellular carcinoma. Peng X; Shi Y; Zhang B; Xu C; Lang J J Med Virol; 2023 Sep; 95(9):e29084. PubMed ID: 37721443 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive analysis of the immunogenic cell death-related signature for predicting prognosis and immunotherapy efficiency in patients with lung adenocarcinoma. Cui Y; Li Y; Long S; Xu Y; Liu X; Sun Z; Sun Y; Hu J; Li X BMC Med Genomics; 2023 Aug; 16(1):184. PubMed ID: 37553698 [TBL] [Abstract][Full Text] [Related]
5. The Comprehensive Analysis Identified an Autophagy Signature for the Prognosis and the Immunotherapy Efficiency Prediction in Lung Adenocarcinoma. Li X; Dai Z; Wu X; Zhang N; Zhang H; Wang Z; Zhang X; Liang X; Luo P; Zhang J; Liu Z; Zhou Y; Cheng Q; Chang R Front Immunol; 2022; 13():749241. PubMed ID: 35529878 [TBL] [Abstract][Full Text] [Related]
6. Prognostic model incorporating immune checkpoint genes to predict the immunotherapy efficacy for lung adenocarcinoma: a cohort study integrating machine learning algorithms. Yang XL; Zeng Z; Wang C; Wang GY; Zhang FQ Immunol Res; 2024 Aug; 72(4):851-863. PubMed ID: 38755433 [TBL] [Abstract][Full Text] [Related]
7. Clinical Significance and Immunologic Landscape of a Five-IL(R)-Based Signature in Lung Adenocarcinoma. Fan T; Pan S; Yang S; Hao B; Zhang L; Li D; Geng Q Front Immunol; 2021; 12():693062. PubMed ID: 34497605 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive pan-cancer analysis reveals EPHB2 is a novel predictive biomarker for prognosis and immunotherapy response. Xu S; Zheng Y; Ye M; Shen T; Zhang D; Li Z; Lu Z BMC Cancer; 2024 Aug; 24(1):1064. PubMed ID: 39198775 [TBL] [Abstract][Full Text] [Related]
9. Machine-learning and combined analysis of single-cell and bulk-RNA sequencing identified a DC gene signature to predict prognosis and immunotherapy response for patients with lung adenocarcinoma. Zhang L; Guan M; Zhang X; Yu F; Lai F J Cancer Res Clin Oncol; 2023 Nov; 149(15):13553-13574. PubMed ID: 37507593 [TBL] [Abstract][Full Text] [Related]
10. Identification of immune activation-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Zeng W; Wang J; Yang J; Chen Z; Cui Y; Li Q; Luo G; Ding H; Ju S; Li B; Chen J; Xie Y; Tong X; Liu M; Zhao J Front Immunol; 2023; 14():1217590. PubMed ID: 37492563 [TBL] [Abstract][Full Text] [Related]
11. Combination of tumor mutation burden and immune infiltrates for the prognosis of lung adenocarcinoma. Zhao Z; He B; Cai Q; Zhang P; Peng X; Zhang Y; Xie H; Wang X Int Immunopharmacol; 2021 Sep; 98():107807. PubMed ID: 34175739 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive analysis of a chemokine- and chemokine receptor family-based signature for patients with lung adenocarcinoma. Fan T; Liu Y; Liu H; Wang L; Tian H; Zheng Y; Zheng B; Xue L; Tan F; Xue Q; Gao S; Li C; He J Cancer Immunol Immunother; 2021 Dec; 70(12):3651-3667. PubMed ID: 33977344 [TBL] [Abstract][Full Text] [Related]
13. Deciphering lung adenocarcinoma prognosis and immunotherapy response through an AI-driven stemness-related gene signature. Ye B; Hongting G; Zhuang W; Chen C; Yi S; Tang X; Jiang A; Zhong Y J Cell Mol Med; 2024 Jul; 28(14):e18564. PubMed ID: 39046884 [TBL] [Abstract][Full Text] [Related]
14. Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma. Han T; Bai Y; Liu Y; Dong Y; Liang C; Gao L; Zhou J; Guo J; Wu J; Hu D Funct Integr Genomics; 2024 Jun; 24(4):118. PubMed ID: 38935217 [TBL] [Abstract][Full Text] [Related]
15. Identifying an immunogenic cell death-related gene signature contributes to predicting prognosis, immunotherapy efficacy, and tumor microenvironment of lung adenocarcinoma. Li X; Zhang D; Guo P; Ma S; Gao S; Li S; Yuan Y Aging (Albany NY); 2024 Apr; 16(7):6290-6313. PubMed ID: 38575204 [TBL] [Abstract][Full Text] [Related]
16. Study of LY9 as a potential biomarker for prognosis and prediction of immunotherapy efficacy in lung adenocarcinoma. Deng K; Yuan L; Xu Z; Qin F; Zheng Z; Huang L; Jiang W; Qin J; Sun Y; Zheng T; Ou X; Zheng L; Li S PeerJ; 2024; 12():e17816. PubMed ID: 39193519 [TBL] [Abstract][Full Text] [Related]
17. Advancing lung adenocarcinoma prognosis and immunotherapy prediction with a multi-omics consensus machine learning approach. Lin H; Zhang X; Feng Y; Gong Z; Li J; Wang W; Fan J J Cell Mol Med; 2024 Jul; 28(13):e18520. PubMed ID: 38958523 [TBL] [Abstract][Full Text] [Related]
18. Identification of an immune-related six-long noncoding RNA signature as a novel prognosis biomarker for adenocarcinoma of lung. Miao H; Chen D; Li R; Hu J; Chen Y; Xu C; Wen Z Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33324975 [TBL] [Abstract][Full Text] [Related]
19. An aging-related signature predicts favorable outcome and immunogenicity in lung adenocarcinoma. Zhang W; Li Y; Lyu J; Shi F; Kong Y; Sheng C; Wang S; Wang Q Cancer Sci; 2022 Mar; 113(3):891-903. PubMed ID: 34967077 [TBL] [Abstract][Full Text] [Related]
20. Analyzing the characteristics of immune cell infiltration in lung adenocarcinoma via bioinformatics to predict the effect of immunotherapy. Liao Y; He D; Wen F Immunogenetics; 2021 Oct; 73(5):369-380. PubMed ID: 34302518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]