These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37592951)

  • 21. Distal Allylic/Benzylic C-H Functionalization of Silyl Ethers Using Donor/Acceptor Rhodium(II) Carbenes.
    Vaitla J; Boni YT; Davies HML
    Angew Chem Int Ed Engl; 2020 May; 59(19):7397-7402. PubMed ID: 31908146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhodium-catalyzed enantioselective cyclopropanation of electron deficient alkenes.
    Wang H; Guptill DM; Alvarez AV; Musaev DG; Davies HM
    Chem Sci; 2013 Jul; 4(7):2844-2850. PubMed ID: 24049630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of 1,2-Diarylcyclopropanecarboxylates with 1,2,2-Triarylcyclopropanecarboxylates as Chiral Ligands for Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.
    Wertz B; Ren Z; Bacsa J; Musaev DG; Davies HML
    J Org Chem; 2020 Oct; 85(19):12199-12211. PubMed ID: 32803966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Synthesis of Novel Chiral Dirhodium(II) Carboxylate Complexes for Asymmetric Cyclopropanation Reactions.
    Adly FG; Gardiner MG; Ghanem A
    Chemistry; 2016 Mar; 22(10):3447-3461. PubMed ID: 26833989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enantio- and diastereoselective synthesis of cis-2-aryl-3-methoxycarbonyl-2,3-dihydrobenzofurans via the Rh(II)-catalyzed C-H insertion process.
    Saito H; Oishi H; Kitagaki S; Nakamura S; Anada M; Hashimoto S
    Org Lett; 2002 Oct; 4(22):3887-90. PubMed ID: 12599484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Supported Chiral Dirhodium Organic Frameworks Enables Efficient Asymmetric Cyclopropanation.
    Li Z; Jiang H; Zhu M; Zhang F
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19003-19013. PubMed ID: 38566322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The binding of diruthenium (II,III) and dirhodium (II,II) paddlewheel complexes at DNA/RNA nucleobases: Computational evidences of an appreciable selectivity toward the AU base pairs.
    Tolbatov I; Umari P; Marrone A
    J Mol Graph Model; 2024 Sep; 131():108806. PubMed ID: 38824876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dirhodium tetracarboxylate derived from adamantylglycine as a chiral catalyst for carbenoid reactions.
    Reddy RP; Lee GH; Davies HM
    Org Lett; 2006 Aug; 8(16):3437-40. PubMed ID: 16869629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral-at-Ruthenium Catalysts for Nitrene-Mediated Asymmetric C-H Functionalizations.
    Ye CX; Meggers E
    Acc Chem Res; 2023 May; 56(9):1128-1141. PubMed ID: 37071874
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Chen Z; Cai Q; Boni YT; Liu W; Fu J; Davies HML
    Org Lett; 2023 Jun; 25(22):3995-3999. PubMed ID: 37253354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhodium carboxylate catalyzed decomposition of vinyldiazoacetates in the presence of heterodienes: enantioselective synthesis of the 6-azabicyclo[3.2.2]nonane and 6-azabicyclo[3.2.2]nonanone ring systems.
    Davies HM; Hodges LM
    J Org Chem; 2002 Aug; 67(16):5683-9. PubMed ID: 12153269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dirhodium(II) tetrakis[methyl 2-oxaazetidine-4-carboxylate]: a chiral dirhodium(II) carboxamidate of exceptional reactivity and selectivity.
    Doyle MP; Davies SB; Hu W
    Org Lett; 2000 Apr; 2(8):1145-7. PubMed ID: 10804575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of Tertiary Alcohols from the Rhodium-Catalyzed Reactions of Donor/Acceptor Carbenes with Esters.
    Fu L; Hoang K; Tortoreto C; Liu W; Davies HML
    Org Lett; 2018 Apr; 20(8):2399-2402. PubMed ID: 29641207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Heteroleptic Dirhodium Catalyst for Asymmetric Cyclopropanation with α-Stannyl α-Diazoacetate. "Stereoretentive" Stille Coupling with Formation of Chiral Quarternary Carbon Centers.
    Caló FP; Fürstner A
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13900-13907. PubMed ID: 32426901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronically tuned chiral ruthenium porphyrins: extremely stable and selective catalysts for asymmetric epoxidation and cyclopropanation.
    Berkessel A; Kaiser P; Lex J
    Chemistry; 2003 Oct; 9(19):4746-56. PubMed ID: 14566882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetric cyclopropanation of styrenes catalyzed by metal complexes of D2-symmetrical chiral porphyrin: superiority of cobalt over iron.
    Chen Y; Zhang XP
    J Org Chem; 2007 Jul; 72(15):5931-4. PubMed ID: 17590051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational chemical analysis of Ru(II)-Pheox-catalyzed highly enantioselective intramolecular cyclopropanation reactions.
    Nakagawa Y; Nakayama N; Goto H; Fujisawa I; Chanthamath S; Shibatomi K; Iwasa S
    Chirality; 2019 Jan; 31(1):52-61. PubMed ID: 30515897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantioselective Alkynylation of 2-Trifluoroacetyl Imidazoles Catalyzed by Bis-Cyclometalated Rhodium(III) Complexes Containing Pinene-Derived Ligands.
    Zheng Y; Harms K; Zhang L; Meggers E
    Chemistry; 2016 Aug; 22(34):11977-81. PubMed ID: 27312941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis.
    Werlé C; Goddard R; Philipps P; Farès C; Fürstner A
    J Am Chem Soc; 2016 Mar; 138(11):3797-805. PubMed ID: 26910883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.