These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37594067)

  • 1. Polarization consistent dielectric screening in polarizable continuum model calculations of solvation energies.
    Khatri R; Dunietz BD
    J Chem Phys; 2023 Aug; 159(7):. PubMed ID: 37594067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screened Range-Separated Hybrid Functional with Polarizable Continuum Model Overcomes Challenges in Describing Triplet Excitations in the Condensed Phase Using TDDFT.
    Begam K; Bhandari S; Maiti B; Dunietz BD
    J Chem Theory Comput; 2020 May; 16(5):3287-3293. PubMed ID: 32309951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent Dependent Nuclear Magnetic Resonance Molecular Parameters Based on a Polarization Consistent Screened Range Separated Hybrid Density Functional Theory Framework.
    Begam K; Cohen L; Goobes G; Dunietz BD
    J Chem Theory Comput; 2022 Sep; 18(9):5259-5266. PubMed ID: 35929782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Accuracy in Calculating Charge Transfer State Energies in Solvated Molecular Complexes Using a Screened Range Separated Hybrid Functional within a Polarized Continuum Model.
    Bhandari S; Dunietz BD
    J Chem Theory Comput; 2019 Aug; 15(8):4305-4311. PubMed ID: 31356067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental Gaps of Condensed-Phase Organic Semiconductors from Single-Molecule Calculations using Polarization-Consistent Optimally Tuned Screened Range-Separated Hybrid Functionals.
    Bhandari S; Cheung MS; Geva E; Kronik L; Dunietz BD
    J Chem Theory Comput; 2018 Dec; 14(12):6287-6294. PubMed ID: 30444365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing Implicit and Explicit Polarizable Solvation Models for Nuclear-Electronic Orbital Systems: Quantum Proton Polarization and Solvation Energetics.
    Lambros E; Link B; Chow M; Lipparini F; Hammes-Schiffer S; Li X
    J Phys Chem A; 2023 Nov; 127(44):9322-9333. PubMed ID: 37889479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient implementation of the analytical second derivatives of hartree-fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model.
    Garcia-Ratés M; Neese F
    J Comput Chem; 2019 Jul; 40(20):1816-1828. PubMed ID: 30938846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Explicit Quantum Solvent with a Polarizable Continuum Model.
    Provorse Long MR; Isborn CM
    J Phys Chem B; 2017 Nov; 121(43):10105-10117. PubMed ID: 28992689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic Spectra of C
    Chakravarty C; Aksu H; Maiti B; Dunietz BD
    J Phys Chem A; 2021 Sep; 125(35):7625-7632. PubMed ID: 34448570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model.
    Zheng Z; Brédas JL; Coropceanu V
    J Phys Chem Lett; 2016 Jul; 7(13):2616-21. PubMed ID: 27338105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models.
    You ZQ; Mewes JM; Dreuw A; Herbert JM
    J Chem Phys; 2015 Nov; 143(20):204104. PubMed ID: 26627947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An EOM-CCSD-PCM Benchmark for Electronic Excitation Energies of Solvated Molecules.
    Ren S; Harms J; Caricato M
    J Chem Theory Comput; 2017 Jan; 13(1):117-124. PubMed ID: 27973775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water.
    Manzoni V; Lyra ML; Coutinho K; Canuto S
    J Chem Phys; 2011 Oct; 135(14):144103. PubMed ID: 22010694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the dielectric-dependent screened exchange potential approach to organic photocell materials.
    Shimazaki T; Nakajima T
    Phys Chem Chem Phys; 2016 Oct; 18(39):27554-27563. PubMed ID: 27711664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implicit solvation in domain based pair natural orbital coupled cluster (DLPNO-CCSD) theory.
    Garcia-Ratés M; Becker U; Neese F
    J Comput Chem; 2021 Oct; 42(27):1959-1973. PubMed ID: 34347890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption and fluorescence spectra of heterocyclic isomers from long-range-corrected density functional theory in polarizable continuum approach.
    Kityk AV
    J Phys Chem A; 2012 Mar; 116(11):3048-55. PubMed ID: 22356351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Importance of the Orbital Relaxation in Ground-State Coupled Cluster Calculations in Solution with the Polarizable Continuum Model of Solvation.
    Caricato M; Scalmani G
    J Chem Theory Comput; 2011 Dec; 7(12):4012-8. PubMed ID: 26598347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.