These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37594069)

  • 21. Many-body interaction analysis: algorithm development and application to large molecular clusters.
    Kulkarni AD; Ganesh V; Gadre SR
    J Chem Phys; 2004 Sep; 121(11):5043-50. PubMed ID: 15352794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions.
    Kumar A; DeGregorio N; Iyengar SS
    J Chem Theory Comput; 2021 Nov; 17(11):6671-6690. PubMed ID: 34623129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the Many-Body Basis Set Superposition Error: Beyond Boys and Bernardi.
    Richard RM; Bakr BW; Sherrill CD
    J Chem Theory Comput; 2018 May; 14(5):2386-2400. PubMed ID: 29578705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple and consistent quantum-chemical fragmentation scheme for proteins that includes two-body contributions.
    Vornweg JR; Wolter M; Jacob CR
    J Comput Chem; 2023 Jul; 44(18):1634-1644. PubMed ID: 37171574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Many-Body Expansion for Aqueous Systems Revisited: II. Alkali Metal and Halide Ion-Water Interactions.
    Heindel JP; Xantheas SS
    J Chem Theory Comput; 2021 Apr; 17(4):2200-2216. PubMed ID: 33709708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Appraisal of molecular tailoring approach for large clusters.
    Sahu N; Yeole SD; Gadre SR
    J Chem Phys; 2013 Mar; 138(10):104101. PubMed ID: 23514459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers
    Loipersberger M; Malone FD; Welden AR; Parrish RM; Fox T; Degroote M; Kyoseva E; Moll N; Santagati R; Streif M
    Chem Sci; 2023 Mar; 14(13):3587-3599. PubMed ID: 37006701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules.
    Hua S; Hua W; Li S
    J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing
    Herman KM; Xantheas SS
    Phys Chem Chem Phys; 2023 Mar; 25(10):7120-7143. PubMed ID: 36853239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning prediction of interaction energies in rigid water clusters.
    Bose S; Dhawan D; Nandi S; Sarkar RR; Ghosh D
    Phys Chem Chem Phys; 2018 Sep; 20(35):22987-22996. PubMed ID: 30156235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy benchmarks for water clusters and ice structures from an embedded many-body expansion.
    Gillan MJ; Alfè D; Bygrave PJ; Taylor CR; Manby FR
    J Chem Phys; 2013 Sep; 139(11):114101. PubMed ID: 24070273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach.
    Li W; Dong H; Ma J; Li S
    Acc Chem Res; 2021 Jan; 54(1):169-181. PubMed ID: 33350806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.
    Li W; Li S; Jiang Y
    J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol.
    Zhu X; Iyengar SS
    J Chem Theory Comput; 2022 Sep; 18(9):5125-5144. PubMed ID: 35994592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fragment Quantum Mechanical Method for Large-Sized Ion-Water Clusters.
    Liu J; Qi LW; Zhang JZH; He X
    J Chem Theory Comput; 2017 May; 13(5):2021-2034. PubMed ID: 28379695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Many-Overlapping-Body (MOB) Expansion: A Generalized Many Body Expansion for Nondisjoint Monomers in Molecular Fragmentation Calculations of Covalent Molecules.
    Mayhall NJ; Raghavachari K
    J Chem Theory Comput; 2012 Aug; 8(8):2669-75. PubMed ID: 26592112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy.
    Wang Z; Han Y; Li J; He X
    J Phys Chem B; 2020 Apr; 124(15):3027-3035. PubMed ID: 32208716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous development of schemes for parallel computing of the electrostatics in biological systems: implementation in DelPhi.
    Li C; Petukh M; Li L; Alexov E
    J Comput Chem; 2013 Aug; 34(22):1949-60. PubMed ID: 23733490
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.