These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37594599)

  • 1. Intraspecific variation in leaf litter alters fitness metrics and the gut microbiome of consumers.
    Jackrel SL; Broe TY
    Oecologia; 2023 Aug; 202(4):769-782. PubMed ID: 37594599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities.
    Kominoski JS; Marczak LB; Richardson JS
    Ecology; 2011 Jan; 92(1):151-9. PubMed ID: 21560685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of Riparian Plants among and within Species Shapes River Communities.
    Jackrel SL; Wootton JT
    PLoS One; 2015; 10(11):e0142362. PubMed ID: 26539714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function.
    Jackrel SL; Wootton JT
    Proc Biol Sci; 2015 Apr; 282(1805):. PubMed ID: 25788602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodiversity mediates the effects of stressors but not nutrients on litter decomposition.
    Beaumelle L; De Laender F; Eisenhauer N
    Elife; 2020 Jun; 9():. PubMed ID: 32589139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastic responses to hot temperatures homogenize riparian leaf litter, speed decomposition, and reduce detritivores.
    Jeplawy JR; Cooper HF; Marks J; Lindroth RL; Andrews MI; Compson ZG; Gehring C; Hultine KR; Grady K; Whitham TG; Allan GJ; Best RJ
    Ecology; 2021 Oct; 102(10):e03461. PubMed ID: 34236702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing a 'genes-to-ecosystems' approach to understanding aquatic-terrestrial linkages.
    Crutsinger GM; Rudman SM; Rodriguez-Cabal MA; McKown AD; Sato T; MacDonald AM; Heavyside J; Geraldes A; Hart EM; LeRoy CJ; El-Sabaawi RW
    Mol Ecol; 2014 Dec; 23(23):5888-903. PubMed ID: 25243489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking tree genetics and stream consumers: isotopic tracers elucidate controls on carbon and nitrogen assimilation.
    Compson ZG; Hungate BA; Whitham TG; Koch GW; Dijkstra P; Siders AC; Wojtowicz T; Jacobs R; Rakestraw DN; Allred KE; Sayer CK; Marks JC
    Ecology; 2018 Aug; 99(8):1759-1770. PubMed ID: 29603188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Origin, Succession, and Predicted Metabolism of Bacterial Communities Associated with Leaf Decomposition.
    Jackrel SL; Gilbert JA; Wootton JT
    mBio; 2019 Sep; 10(5):. PubMed ID: 31481384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraspecific leaf chemistry drives locally accelerated ecosystem function in aquatic and terrestrial communities.
    Jackrel SL; Morton TC; Wootton JT
    Ecology; 2016 Aug; 97(8):2125-2135. PubMed ID: 27859211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local adaptation of stream communities to intraspecific variation in a terrestrial ecosystem subsidy.
    Jackrel SL; Wootton JT
    Ecology; 2014 Jan; 95(1):37-43. PubMed ID: 24649644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Litter chemistry and chemical diversity drive ecosystem processes in forest ponds.
    Stoler AB; Burke DJ; Relyea RA
    Ecology; 2016 Jul; 97(7):1783-1795. PubMed ID: 27859152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption?
    Graça MA; Poquet JM
    Oecologia; 2014 Mar; 174(3):1021-32. PubMed ID: 24221083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests.
    Melguizo-Ruiz N; Jiménez-Navarro G; De Mas E; Pato J; Scheu S; Austin AT; Wise DH; Moya-Laraño J
    J Anim Ecol; 2020 Feb; 89(2):334-346. PubMed ID: 31494934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry Matters: High Leaf Litter Consumption Does Not Represent a Direct Increase in Shredders' Biomass.
    Cararo ER; Bernardi JP; Lima-Rezende CA; Magro JD; Rezende RS
    Neotrop Entomol; 2023 Jun; 52(3):452-462. PubMed ID: 37129841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of subsidy quality on reciprocal subsidies: how leaf litter species changes frog biomass export.
    Earl JE; Castello PO; Cohagen KE; Semlitsch RD
    Oecologia; 2014 May; 175(1):209-18. PubMed ID: 24399483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salamander loss alters litter decomposition dynamics.
    Laking AE; Li Z; Goossens E; Miñarro M; Beukema W; Lens L; Bonte D; Verheyen K; Pasmans F; Martel A
    Sci Total Environ; 2021 Jul; 776():145994. PubMed ID: 33647642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A traits-based test of the home-field advantage in mixed-species tree litter decomposition.
    Jewell MD; Shipley B; Paquette A; Messier C; Reich PB
    Ann Bot; 2015 Oct; 116(5):781-8. PubMed ID: 26162398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible phenotypic plasticity in plants regulates aquatic ecosystem functioning.
    Jackrel SL; Morton TC
    Oecologia; 2018 Apr; 186(4):895-906. PubMed ID: 29480452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems.
    Lecerf A; Dobson M; Dang CK; Chauvet E
    Oecologia; 2005 Dec; 146(3):432-42. PubMed ID: 16096846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.